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1. Objectives 

The objectives were to enable more dynamic and robust real-time scheduling and analysis of 

complex large-scale systems in the presence of variable or unpredictable behaviors. We want to 

support complex task models in which tasks may non-deterministically select among alternative 

behaviors, in which tasks may use non-trivial protocols to interact with each other, and in which 

different tasks may have different performance requirements (e.g. hard deadlines versus high 

average throughputs). We want to develop distributed and highly tractable allocation and 

scheduling policies that achieve high resource utilizations. We want to provide high assurance 

that performance requirements will be met in the presence of uncertainty. 

We developed and applied new hybrid system models and analytic methods to address these 

problems. We developed methods to concisely introduce real-time scheduling behaviors into 

systems of real-time tasks whose behaviors (both temporal and functional) were specified using a 

hybrid automata notation. We investigated improved model-checking methods for such models, 

including partial order methods, and the use of rules to distinguish anomalous from anomaly-free 

behaviors to simplify the model. We developed approximation and hierarchical abstraction 

methods for more tractable analysis. Using insights gained from this work, we were able to 

obtain some new results for more traditional models. We developed methods for anomaly-free 

preemptive scheduling of repetitive job shop problems. We developed a new model and 

methods for globally asynchronous end-to-end scheduling in heterogeneous systems. 

2. Accomplishments/New Findings 

We had earlier developed algorithms for improved model-checking of systems of linear hybrid 

automata. Using these methods, we were able to model-check a problem of real-world size and 

complexity (a model of the task management code modules of a real-time middleware layer). 

However, as with all model-checking approaches, these algorithms suffer from combinatorial 

explosion as the problem size grows. One source of combinatorial explosion occurs when there 

many possible transitions out of a system state, where full enumeration will explore all are 
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possible orders in which these transitions can occur. Partial order methods have been very 

successful in dealing with certain discrete model-checking problems (e.g. the widely-used SPIN 

tool from Bell Labs).   We developed some preliminary partial order methods for linear hybrid 

automata and prototyped them in our tool, with encouraging results. These methods involve 

checking to see if, among a set of enabled transitions out of a region, the region reached when 

they are taken in one order always contains the region reached when they are taken in the other 

order (in which case the second order need not be explored. We also developed a preliminary 

approach to prove the correctness of such techniques, involving a kind of "algebra" over 

sequences of operations during model-checking. However, we were unable to demonstrate truly 

dramatic benefits (other than for the special case of models that contained many singular guards), 

or to push through a proof of correctness under the current contract. 

After we prototyped our hypothetical partial order method, we were able to solve some problems 

that were larger than before. Unfortunately, the size of the polyhedra (number of continuous 

variables and linear inequalities in a region) became large enough that we began to see numeric 

problems. For example, CPLEX (a very widely-used commercial package) would sometimes 

determine that the exact same set of inequalities was feasible for one objective but infeasible for 

another. We conjecture this is due to high degrees of redundancy and degeneracy in the sets of 

inequalities. We worked with the Institute for Mathematics and its Applications at the 

University of Minnesota to identify some alternative approaches to deal with this problem (e.g. a 

modified version of an algorithm that always progresses and hence cannot cycle at degenerate 

vertices, algorithms that use rational rather than real arithmetic). This problem was presented as 

a workshop problem at the IMA Mathematical Modeling in Industry Workshop for Graduate 

Students in August 2004. The report produced by the graduate students who worked on this 

problem is attached as an appendix. 

It has been known for a long time that many multi-resource scheduling algorithms exhibit 

anomalous behaviors, in the sense that simplifying a problem (e.g. reducing the compute time of 

some task) may result in a worse schedule. Such schedulers are not robust in the face of run- 

time variations in behavior. This complicates worst-case analysis and verification of systems. 

We investigated both execution time anomalies (a deadline is missed when a less-than-worst- 

case execution time occurs) and release time anomalies (a deadline is missed when a greater- 

than-minimum inter-release time occurs). We showed that optimal time-triggered preemptive 

3 
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priority schedules may be anomalous, but then we also showed how any time-triggered 

preemptive priority schedule (optimal or not) can be converted to an anomaly-free schedule. We 

showed that anomalous behavior cannot be avoided given arbitrary phase offsets betvveen release 

times. We made a preliminary identification of a scheduling policy and schedulability analysis 

algorithm for asynchronous systems with lower-bounded but otherwise nondeterministic release 

times that is anomaly-free with respect to execution times and has bounded anomalies with 

respect to release times, but were not able to push through the detailed proof and develop a 

publishable paper on the current contract. A draft copy of a technical paper that describes these 

results is attached as an appendix. 

A reason for our interest in anomalous scheduling is that, if a system may exhibit anomalous 

behaviors, then model-checking a hybrid model of that system must explore all possible ranges 

of compute times and inter-arrival times. We developed a preliminary rule for determining, 

during model-checking, when a transition can be guaranteed to not introduce anomalous 

behaviors (when the transition cannot release a task that would preempt another any earlier than 

it would have otherwise). Such transitions could then be deferred (i.e. ignored in certain system 

regions), which our preliminary studies suggest could significantly increase the size of problem 

that could be model-checked. However, we were unable to complete a prototype evaluation or 

proof of correctness for this method on the current contract. 

Several researchers have investigated the use of approximation techniques to improve model- 

checking speed at the expense of occasional false negative results (if the model checks then it is 

correct, but some correct models may be incorrectly flagged as erroneous). We prototyped and 

experimented with several approaches. In our experience, it is very difficult to introduce 

approximate polyhedra in a way that is both fairly precise (few false positives) yet significantly 

reduces model-checking time. Any approximate polyhedron must be introduced onto the search- 

from list in the model checker, and in our exercises this often resulted in more effort rather than 

less. An approximation so large that it significantly reduced model-checking time was so 

imprecise that large numbers of correct models were erroneously labeled incorrect. We found 

only one method that offered modest gain (e.g. a factor of 2 reduction in the number of regions 

explored with very few false positives). In any reachable discrete state, there are typically 

numerous polyhedra enumerated. We first grouped these into clusters according to some 

clustering rule (e.g. their intersection is heuristically likely to be of significant size). We then 

4 
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generated an approximation that contained each cluster by taking the "earliest" (in some intuitive 

sense) polyhedron and projecting it forward in time using the normal reach-forward operation so 

that the result contained the cluster. A method to estimate a set of variable rates needed to do 

this was used. However, because of the way our model-checker was written (keeping a multiple 

of a linear constraint so we stored only integer coefficients, rather than rational numbers for each 

individual coefficient), we were unable to prototype and evaluate an accurate version of this 

method on the current contract. 

Another approach, first explored in discrete process algebras, is to develop an abstract 

automation that is equivalent (in some sense) to a subset of the concrete automata in a system, 

then substitute the abstract for that subset and perform analysis on the reduced system. We 

developed preliminary methods to verify that a hand-developed abstraction (such as a 

specification of system behavior) is a safe approximation (not necessarily equivalent) to a 

concrete subsystem. We developed methods not only for hybrid automata, but also for 

concurrent stochastic automata. These methods were applied within the context of an emerging 

standard architecture description language for embedded computer systems. A much more 

complete toolkit of such methods would be needed before this approach became practically 

applicable, but it appears to offer great promise to improve the development of rigorous 

specifications as well as improve the tractability of model-checking. These results will be 

presented at an upcoming IFIP World Congress workshop in Toulouse in August 2004. This 

paper is attached as an appendix. 

All the published research models (of which we are aware) for distributed real-time systems 

either fall into the time-triggered class (points along a sequence of events are statically assigned 

a global time of occurrence) or the event-triggered class, including those using traffic regulation 

or shaping for scheduling and analysis purposes (once a sequence of subtasks arrives, they are 

executed in order, each released when its successor completes). However, there is a third model 

that occurs fairly often in practice, a system of periodic tasks that sample each other's outputs. 

This model is obtained, for example, by starting with a continuous-time model for the activity on 

each node (as a control engineer would), then converting each node independently to a sampled 

data system. We first identified this model, and defined a new metric for end-to-end 

performance (the age of an output is the maximum time elapsed since the inputs on which it is 

based were sampled), on an internal project looking at possible architectures for next-generation 

5 
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air transport aircraft (e.g. 7E7). Under contract, we used data obtained from proposed hardware 

architectures and application software to generate an age scheduling model of real-world size 

and' complexity. We explored methods to multiplex and de-multiplex signals over busses and 

switched networks. We prototyped the automatic generation of a nonlinear constraint model 

whose solution would be a feasible schedule that satisfied end-to-end age bounds, and used a 

commercial tool (AMPL/CONOPTS) to demonstrate that schedules for systems of this size could 

be tractably solved using this approach. The practical results of this study will be presented at 

the upcoming SAE World Congress in Reno in November 2004. A draft copy of a paper that 

gives the technical details isattached as an appendix. 

3. Related Publications 

"Architecture Specification and Automated Timing and Safety Analysis for a Large Avionics 

System," to be presented at SAE World Congress, Reno, NV, 3 November 2004. 

"Hierarchical Composition and Abstraction in Architecture Models," with Pam Binns, to appear 

IFIP Workshop on Architecture Description Languages, Toulouse, France, 27 August 2004. 

"Formalizing Software Architectures for Embedded Systems," with Pam Binns, First 

International Workshop on EmbeddedSoftware,Tahoe City, CK October 200\. 

"Formalizing Software Architectures for Embedded Systems," with Pam Binns, Monterey 

fForJt5/jop 2001, Monterey, CA, June 2001. 

"Modeling and Verification of Real-Time Software Using Extended Linear Hybrid Automata," 

NASA Langley Formal Methods Workshop, iune 2000. 

"Formal Verification of the MetaH Executive Using Linear Hybrid Automata," Real-Time 

Applications Symposium, ixmt 2000. 

4. Interactions/Transitions 

The emerging SAE standard Avionics Architecture Description Language (AADL), which is 

based on our original MetaH language, is expected to be formally issued in Fail 2004. This 
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standard formally specifies some real-time tasking semantics using hybrid automata concepts 

developed and demonstrated on this contract. Contact: Bruce Lewis, US Army AMCOM, 

bruce.lewis@,sed.redstone.armv.mil 

The problems we uncovered in solving for containment among polyhedra in the presence of high 

degrees of redundancy and degeneracy were presented as a workshop problem at the IMA 

Mathematical Modeling in Industry Workshop for Graduate Students in August 2004. The 

resulting technical report is attached as an appendix. Contact: Fadil Santosa, Institute for 

Mathematics and its Applications, santosa(a),ima.umn.edu. 

We are a subcontractor to the University of Pennsylvania on an NSF program to develop 

automated testing technologies for hybrid systems. This is an outgrowth of our work on this 

contract. Contact: Insup Lee, University of Pennsylvania, lee@,central.cis.upenn.edu. 

5. New Discoveries/Inventions/Patents 

No patents were filed under this contract. 

6. Honors/Awards 

The principle investigator serves as a member of the DUSD(S&T) Avionics Advisory Team. 

The AAT provided technical consulting to the F/A-22 Raptor and F-35 JSF programs. Contact: 

Andre Van Tilborg, DUSD (Science & Technology), Andre.VanTilborg@.osd.mil 
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Appendices 

A. "New Approaches to Polyhedral Containment Check within a Linear Hybrid 

Automata Reachability Procedure," technical report prepared by team 5 at 

the Institute for Mathematics and its Applications 2004 Graduate Workshop, 

sponsored by the National Science Foundation. 

B. "Anomaly Free Real-Time Scheduling," draft publication. 

C. "Hierarchical Composition and Abstraction in Architecture Models," to 

appear ADL Workshop, IFIP World Congress, Toulouse, August 2004. 

D. "Real-Time Sampled Signal Flows through Asynchronous Distributed 

Systems," draft publication. 



A Technical Report 
NEW APPROACHES TO POLYHEDRAL CONTAINMENT CHECK 

WITHIN A LINEAR HYBRID AUTOMATA REACHABILITY 
PROCEDURE 1 

Industry Mentor: Steve Vestal, Honeywell, Inc. 

Jessica Conway^, Ali Khoujmane ^, Gary Kilper'*, 
Harun Kurkcu ^, Rochelle Pereira^ Sonja Petrovic^ 

August 8-18th, 2OO4. 

1    Introduction- Why Polyhedral Containment? 

Computer scientists use a variety of specialized models to describe the be- 
havior of an algorithm or computer system over time. Many of these models 
can be subjected to a kind of analysis called reachability analysis, a special 
case of model-checking. This analysis answers the question, " Given a model 
and its initial state, is it possible to reach a second given state from the initial 
state by any possible behavior of the system?" The model of interest here is 
a linear hybrid automaton, which is a finite state automaton augmented with 
a set of continuous variables and a set of rules about how the states of the 
continuous variables may change as the system passes through a sequence of 
the discrete locations [1]. 

Many reachability analj'ses are at heart an iterative search for a fixed 
point of sets of reachable states. Given a state known to be reachable, enu- 
merate other states that are reachable from it according to the model. Con- 
tinue until every newly enumerated state has already been reached. The 
state space of a linear hybrid automaton is uncountable since it includes the 
states of continuously varying real-valued variables, but it turns out that 

^Project 5 of tlie 2004 IM.A. Summer Piogiam: Matliematical Modeling in Industry- A 
Worksliop for Graduate Students. This work was supported in part by AFOSR and NSF 
through IM.\ 

-Northwestern University 
^Texas Tecli University 
"• University of Chicago 
^University of Miime.sota 
^University of Chicago 
'University of Kentucky 



the reachable variable states can all be described by enumerating a set of 
polyhedra [1]. To determine when the reachability algorithm can terminate, 
we need to decide if the set of points in a newly enumerated polyhedron is 
contained in previously enumerated polyhedra. This is often done in practice 
by maintaining a list of previously enumerated polyhedra, and for each newly 
enumerated polyhedron checking to see if it is contained in any of these. 

An analysis tool developed at Honeywell Labs for reachability analysis 
of linear hybrid automata used a fairly straight-forward algorithm to check 
for polyhedral containment [19]. This algorithm required the solution to a 
set of linear programming problems for each containment test. However, 
this algorithm exhibited anomalies for a small but significant portion of the 
polyhedra encountered (100% correct handling of all polyhedra is required 
for successful model analysis). 

For example, CPLEX would sometimes decide a set of constraints was 
feasible and sometimes infeasible, depending on the goal function used. A 
second LP solver (a primal/dual algorithm) frequently cycled at degenerate 
vertices, occasionally indefinitely (the manner in which the polyhedra are 
constructed tends to introduce many redundant constraints). 

The problem presented to the IMA team was to investigate these anoma- 
lies and come up with approaches to provide a robust and efficient polyhedral 
containment test. 

Note: We assume that all polyhedra are bounded, as this is the case for 
the given analysis tool. 

2    The Problem: Containment Check 

The main objective of this report is to investigate different approaches to 
check polyhedral containment. The polyhedra are given by sets of inequalities 
that represent the constraints on the continuous variables in the given hybrid 
state. The equations represent hyper planes, which form the polyhedron. 
The directions of the constraint inequalities determine the interior of the 
polyhedron. Each such inequality can be represented by a row in a constraint 
matrix. 

So the problem can be formulated as follows: given a polyhedron I = 
{x e R'' : Cx < d}, decide whether it is contained in a candidate outer 
polyhedron O = {x e R'' : Ax < b}. Note also that some of our techniques, 
in particular the linear programming solvers, assume that a; > 0, but this is 



already the case in our problem. 

3    Linear Programming Approach 

The original version of the reachability analysis tool in [20] solves the con- 
tainment problem using the following linear programming approach: for each 
constraint (each facet) of the outer polyhedron, minimize that row of the con- 
straint matrix A as the objective function subject to the inner polyhedron's 
constraints. The polyhedra are generated in such a way that they are all 
convex. The idea is to ensure that the inner polyhedron satisfies the con- 
straints of the outer polyhedron, hyperplane by hyperplane; each verification 
consists of solving a linear programming problem. Given the inner polyhe- 
dron / = {x\Cx < d} and the outer polyhedron O = {x\Ax < 6}, label each 
row of .4 o, and the corresponding maximal value bi for i = 1, ...,n, n is the 
number of constraints in O. Then the following algorithm is applied: 

for 7 = 1 to n 
/ =  max QiX 

subject to Cx < d 
a- > 0 

if / > b, 
stop; not contained. 

If at each step / < 6,-, then the inner polyhedron is indeed contained by 
the outer polyhedron. 

It should be noted that the polyhedra might be built out of a large number 
of inequalities, so this approach is time consuming. In fact, problems having 
a few hundred constraints have been encountered. 

The most common approaches to solving a linear programming problem 
(LP) are the Simplex algorithm or a primal-dual algorithm [10]. But there 
can be problems with these approaches [13]. Now, the inequality systems with 
which wc are primarily concerned are usually overdetermined, so a goodlj- 
numl)er of degenerate vertices show up. These vertices are such that a greater 
number of edges run through them than there are variables to be constrained. 
Becauso standard LP solvers work b>- moving from vertex to vertex along 
edges until the optimal solution is found, too many edges passing through 
the same vertex may cause stalling or cycling. It is said that for most practical 



applications this is not an obstacle; for our applications, it is. 
We wish to minimize or avoid this difficulty. One source of this difficulty 

is redundancy - extra constraints imposed upon a system of inequalities that 
are already implicitly there. (It should be noted that the removal of all 
redundancy, if it were possible, is still not a perfect solution, as there exist 
degenerate systems that contain no redundancy.) Section 3.1 contains a 
few approaches or attempted approaches to reduce redundancy. Section 3.2. 
discusses the least squares primal-dual (LSPD) algorithm; it solves the LP 
problem in such a way that the degeneracy problem is no longer an obstacle. 

3.1    Reducing Redundancy 

As stated, reducing redundancy in a system may alleviate problems caused 
by degeneracy. The following are attempts at such reduction. Also it should 
be noted that the end of section 5.1.1 points to possible further resources on 
the topic. 

3.1.1    Brute Force Method 

We are given the system of m + 1 inequalities ^x < b in n variables, 
X = (a;i,X2, .-,a;„), where some of the inequalities may be redundant. This 
approach is explained in [7] and is similar to [20], Let s^ be the last row of 
.4, Ai be the remainder of A after the removal of this row, and t be the last 
element of b, bi be the remainder of b after the reduction. Removing these, 
we have the reduced system of rh inequalities ^ix < bj; we wish to know 
if this system implies the last inequality, s^x < t. To do this, the following 
linear programming problem is posed: 

max  s^x 

subject to  Aix < 6i 

Then if the objective function's optimal value is less then or equal to i, the 
inequality s^x < f is redundant and can be removed. 
We repeat this process for each inequality to make the final set of inequalities 
as redundancy free as possible. Though this method is systematic, it is not 
very efficient. What's more, as it reduces to an LP problem, it is still itself 
subject to degeneracy problems. 



3.1.2    Other Methods 

There were attempts to reduce redundancy in more efficient ways. Redun- 
dancy in equality systems can be eUminated using QR decomposition, well 
explained in [17]. More specifically, one would use a rank-revealing QR de- 
composition [16] to determine the number of extranneous or Hnearly depen- 
dant constraints we have. [16] is especially nice because it deals with sparse 
matrices, which we are likely to have. Attempts were made to use this de- 
composition in different ways to reduce the number of inequality constraints, 
but nothing came of that. We are unsure why; this method is applicable 
to equalities, but not inequalities. Also, applying it to degenerate vertices 
might work, except that degeneracy does not imply redundancy. 

3.2    Avoiding Stalling at Degenerate Vertices- the LSPD 
Algorithm 

In case that the existence of degenerate vertices cannot be avoided, there 
is an algorithm that will not stall at such vertices. Namely, it is the least 
squares primal-dual algorithm (LSPD) [5]. The LSPD completes in finitely 
many steps, and avoids the degeneracy problem by not requiring travel via an 
edge toward the next vertex. Instead, it guaranteeing travel in the optimal 
direction towards the best feasible solution. This is done by using a non- 
negative least squares algorithm [14] as a subroutine. 

The least-squares primal-dual algorithm we investigated solves the stan- 
dard linear programming problem to find x e E" with: 

min  ex 

s.t.   Ax = b 

x> 0 

where 6 € R"'. c^ e R" is the cost vector, and .4 e R'"^" is the coefficient 
matrix of constraints. 

3.2.1    The Dual Problem 

There is a prefilter to check if the standard problem is infeasible.   If this 
prefilter fails, LSPD instructs us to focus attention on the dual problem. We 



now look for a vector TT^ € M"" such that 

max  nb 

s.t.  TTA < c 

Duality yields that an optimal solution for the dual problem produces an 
optimal solution for the standard problem; if the dual problem is unbounded, 
the standard problem is infeasible. 

3.2.2    NNLS as a Subroutine 

To find a solution to the dual problem, we go through a series of iterations. 
At each stage i, we have a feasible solution to the dual problem TTJ and a 
matrix Ei whose columns are the columns A satisfying a relation dependent 
on TTj. Here, we look at the non-negative least squares problem [14] 

min   \\b-Eixf 

s.t.  x>0 

If the minimum of this solution is zero at a vector xt, it can be shown 
that TT, is an optimal solution to the dual problem and Xj can be augmented 
with zeros to provide an optimal solution to the standard problem. 

3.2.3    A Better Direction 

If the non-negative least squares problem is not zero, Farkas' Lemma pro- 
vides us with a general direction pi, dependent on Ei and b, in which to find 
a strictly better solution to the dual problem than TT,;. If p, satisfies certain 
properties relative to .4, the dual problem can be shown to be unbounded, 
and thus, the standard problem is infeasible. Otherwise, we can generate 
TTj+i = TTj -I- tpi and begin the iterative process again. 

A salient property of the direction of p,: is that it need not be along an 
edge of the dual polyhedron. Unlike the simplex algorithm, p,; moves along 



the direction of steepest ascent. Since ||pj+i||^ < ||p,|p, the dependency of 
Ei upon p dictates that each iteration produces a different matrix £,. Be- 
cause each Ei is comprised of columns of A, and since A has finitely many 
columns, the LPSD algorithm must terminate in finitely many steps. The 
algorithm avoids degeneracy because it uses NNLS as a subroutine; it took 
fewer iterations in test problems than the simplex method. 

4    Quadratic Programming Approach 

We would like to reduce the number of (linear programming) problems to 
solve. One approach is to formulate the containment check as follows. 

Consider the inner and outer polyhedra, given by / = {re G i?" : Cx < d} 
andO= {xe/?" :>lx < 6}. 

We show containment does not hold by proving the existence of a point 
X satisfying Cx < d (x is in the inner polyhedra) that satisfies one of the 
constraints described by Ax > b (x is outside at least one face of the outer 
polyhedron). Noting that Ax - b measures the "size" of the constraint vio- 
lation, we formulate the problem as follows, as suggested by Tom Grandine 
[12]: 

max y^{Ax - b) 

subject to Cx < d 

l|y||. = i, 
y>o. 

where y is a new variable vector. 

This problem is no longer a linear programming (LP) one, but a quadratic 
programming (QP). Such problems can be solved by QP solvers or by most 
commercial LP solvers. This objective function will be maximized whenever 
the largest constraint violation for the outer is multiplied by one. with all 
the others multiplied by zero. As before, inner is contained within outer 
whenever the objective function value is < 0. It is not contained whene\-er a 
positive objective function value can be obtained. This introduces one new 
variable for each row in A, but it still solves the problem by solving a single 
QP problem at the expense of doubling the number of problem variables. 
Considering this, it will be a good idea whenever .4 has at least eight rows. 



5    New Formulation of Containment Problem 

Finally, we propose a new formulation altogether for the polyhedra con- 
tainment problem. Namely, one can first find all the vertices of the inner 
polyhedron and check whether they are all contained in the candidate outer 
polyhedron. Again, boundedness and convexity of our polyhedra guarantee 
that vertex containment implies polyhedron containment. 

The first goal is thus to find all the vertices of the polyhedron given 
by a set of linear constraints. The process of converting the representation 
I = {x : Ax <b} into 7 = {vi,... ,Un}, where Vi are the vertices, is called 
vertex enumeration. 

The second goal is to check whether each vertex Vi of the inner polyhedron 
satisfies the constraints of the candidate outer. 

5.1    Vertex Enumeration 

We found two algorithms that "efficiently" enumerate vertices. It should be 
noted that the number of vertices may be combinatorially large with respect 
to the size of the constraint matrix, but we don't know if this is true for the 
polehedra seen in Linear Hybrid Automata analysis. These may have special 
structure we don't understand yet. 

5.1.1    The Irs Algorithm 

The following outlines a part of the vertex enumeration reverse search al- 
gorithm {Irs). It is thoroughly explained in [3]. Recall that a polyhedron 
can be described by a list of inequalities (H-representation) or by a list of 
its vertices and extrems rays (V-representation). Irs is a C program that 
converts a H-representation of a polyhedron to its V-representation, and vise 
versa. That is, it solves vertex enumeration and convex hull problems. 

The Irs is based on the reverse search algorithm. Breifiy and informally, 
the reverse search "rs" algorithm works as follows. Suppose we have a sys- 
tem of m linear inequalities defining a d-dimensional polyhedron in R^ and a 
vertex of that polyhedron is given by indices of d inequalities whose bound- 
ing hvperplanes intersect at the vertex. These indices define a cobasis for 
the vertex. The complementary set of m - d indices are called a basis. For 
any given linear objective function, the simplex method generates a path be- 
tween adjacent bases (or, equivalently, cobases)'which are those differing in 
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one index. The path is terminated when a basis of a vertex maximizing this 
objective function is found. The path is found by pivoting, which involves 
iterchanging one of the hyperplanes defining the current cobases with one in 
the basis. The path chosen from the initial given basis depends on the pivot 
rule used, which must be finite to avoid cycling. The initial implementation 
of rs used Eland's least subscript rule. If we look at the set of all such paths 
from all bases of the polyhedron, we get a spanning forest of the graph of 
adjacent bases of the plyhedron. The root of each subtree of the forest is 
a basis of an optimum vertex. The reverse search algorithm starts at each 
root and traces out its subtree in depth first order by reversing the pivot rule. 

Irs solves degeneracy by use of the well-known lexicographic pivot selec- 
tion rule for the simplex method. This rule is defined for a subset of the bases, 
known as lex-positive. The subgraph of lex-positive bases forms a connected 
subgraph of the basis graph which covers all vertices of the polyhedron. Fur- 
thermore an objective function can be chosen so that the simplex method 
initiated at any lex-positive optimum basis. If we initiate the reverse search 
method at this basis and reverse the lexicographic pivot rule we generate a 
spanning tree of the graph of all lex-positive bases. This is the core of Irs. 

The main function of Irs is to find the vertices and extreme rays of a 
polyhedron described by a system of linear inequalities. Additional func- 
tions of Irs are : facet enumeration, computation of voronoi vertices, volume 
computation, estimation of the output size, and restart capability. 

Although Irs is a large improvement on rs, it is far from an efficient 
general solution to the vertex enumeration problem. Such a solution should 
reasonably be required to generate all vertices in time polynomial in the 
input and ouput size. Currently no such algorithm is known to exist. Irs 
is efficient for vertex enumeration of simple (or near-simple) polyhedra, or 
dually for facet enumeration of simplicial (or near-simplicial) polyhedra. 

Remarks. Note that the polyhedra encountered in our reachability analy- 
sis tool are simple (i.e., have no "holes" in them). Also, there may potentially 
be a combinatorial number of vertices. And, more importantly, this paper 
includes careful treatment of degeneracy, so it should be looked into for more 
ideas about solving the degeneracy problem. 



5.1.2    The Double Description Algorithm 

Another tactic for solving the vertex enumeration problem is the double de- 
scription method. Here, we enumerate the extreme rays of polyhedra defined 
by the conditions Ax > 0 for a real-valued matrix A of dimensions mx d 
and rank{A) = d. Translations of this method exist to handle the vertex 
enumeration method [9]. 

Definitions A double description (DD) pair {A, R) is a pair of real-valued 
matrices satisfying 

Ax>^\fix = RX for some A > 0. 

The representation matrix A gives rise to a polyhedral cone, 

P{A) ^{xeW^ : Ax>0} 

The generating matrix R, too, gives rise to a set, 

R= {x eW^ -.x =^ RX for some A > 0} 

Observe that if [A, R) is a double description pair, P{A) = R. Minkowski's 
Theorem for Polyhedral Cones [9] states that given a matrix A of appropriate 
dimensions, there exists a generating matrix R for which {A,R) is a double 
description pair. Intuitively, the columns of il correspond to rays generating 
the cone, P(-4). We may ask whether there exists a minimal set of raj's gener- 
ating P{A), or equivalently, whether there exists a minimal generating matrix R 
such that no submatrix generates the cone P{A). These minimal rays or col- 
umn vectors of i? are extremal rays. 

The Algorithm The algorithm begins with a DD pair {Ao,Ro) in which 
the rows of .4o are a subset of the rows of A and it!o is a minimal matrix 
for P{Ao)- At each stage, a new row of A is added to Ai to yield Ai+i 
and a generating minimal matrix Ri+i is constructed. The vectors (extremal 
rays) used to build Ri are "born" at the i + 1-stage: the i + 1 constraint 
of A is the first constraint which forces these vectors to be extremal rays 
of P{Ai+i). This information is stored and helps reduce redundancy. This 
process continues until all the rows of A have been added to the original 
submatrix Ai and a final generating matrix R is developed. Conceptuallj', 
we build the polyhedron one constraint at a time keeping track of which 
constraint introduces extremal rays. The algorithmn is efficient in solving 
degenerate problems where objects are overconstrained. 
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5.2    Vertex Containment 

Once the vertices of the inner polyhedron / are enumerated, we need to check 
whether they are contained in the candidate outer polyhedron O. 

5.2.1 Brute Force Method, Again 

There is one obvious way to solve this problem- the brute force way- since we 
are given the vertices of / and the inequalities that determine the boundary 
of O. However, there are other ways to check the vertex containment which, 
if the above "direct" approach proves to be expensive, would be a better 
solution. 

5.2.2 Enumerate both / and O 

Suppose it is not very expensive to enumerate vertices. Enumerating the 
vertices of the outer polyhedron O as well provides the representation O - 
{Pi>---,Pm}- Let V be a vertex of I. There exists, indeed, an efficient 
way of determining whether the given point v lies inside of the polytope 
determined by vertices of {pi,... jp^}. A standard method that uses a linear 
programming technique is described in detail by Fukuda [7]. But, as LP 
solving (of complexity at least 0{r?)) is more expensive then evaluating the 
constraints {0{J^), so care must be taken in this case. If the LP problem to 
be solved is small, then this may be a good solution. Recall again that the 
number of vertices may grow combinatorially in the number of constraints: 
but we are currently unsure how "big" our polyhedra are. 

5.2.3 Projected Containment 

Another vertex containment approach would be done in two steps as follows. 

• Project the vertices of / onto the facets of O to bring this to lower 
dimensions: 

• Check containment of the projection. 

We conjecture that the projection can be done efficiently using some 
known technique, but this is yet to be investigated. 

Further, the point-containment problem has gotten a lot of attention for 
the two- and three-dimensional cases, as these are the ones most useful for 
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the computer grapics applications where polyhedral containment checks are 
frequent. The idea behind these quick point-containment algorithms is simple 
and can be summarized as follows. First, they calculate the homogeneous 
coordinate [15] representation of the vertices of the given polyhedron O (this 
is readily available in computer graphics applications). Next, they determine 
the signs of the deteminants of the matrices which consist of the vertices' 
homogeneous coordinates. Finally, the determinant signs obtained from each 
vertex of 0 are used as input into a short Boolean expression, whose true- 
false output indicates whether the polyhedron contains the given point or 
not. 

The trouble with this technique is that, although the Test 4.3.6 and Figure 
8 in [15] give the explicit algorithm, it only works for the point-in-polygon 
test, that is, our projection must be done onto a two-dimensional polygon. 
However, the background definitions in [15] as well as the last conjecture 
in [18] suggest that the idea of a projectively invariant point-containment 
check can be extended to RP- for any n > 3. We further conjecture that 
even though the dimension n may be large, the determinant calculation of a 
(n - 1) X (n - 1) matrix would be quicker than solving a linear programming 
problem. This would yield a new polyhedral containment check that does 
not solve large LP or QP problems, but is based on vertex enumeration, 
projection, determinant calculation, and Boolean expression evaluation. It 
remains to be shown which of these approaches is more effective. 

6    Conclusions 

We investigated three methods to handle the polyhedral containment prob- 
lem. However, due to contractual restrictions, we have been unable to test 
our various ideas on the actual code to see which best remedies the problem. 
Our expectations are that at least one of the methods will solve the problem, 
and one of these positive solutions will be faster than the others. Further- 
more, leads for reducing redundancy and dealing with degeneracy problems 
are worth a longer look. Software packages exist that "solve" the vertex 
enumeration problems, such as [8]. The efficiency of the vertex enumeration 
approach cannot be measured until more fundamental research is done on 
the n-dimensional projectively invariant point containment algorithms. 
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Abstract 
We conjecture that using anomaly-free scheduling 

may contribute to more robust and easily modified 
and verified real-time distributed systems. We con- 
sider both execution time anomalies (a deadline is 
missed when a less-than-worst-case execution time oc- 
curs) and release time anomalies (a deadline is missed 
when a greater-than-minimum inter-release time oc- 
curs). After discussing this conjecture and defining 
our scheduling problem, we show that optimal time- 
triggered preemptive priority schedules may be anoma- 
lous. We show how any time-triggered preemptive pri- 
ority schedule (optimal or not) can be converted to an 
anomaly-free schedule. We show that anomalous be- 
havior cannot be avoided given arbitrary phase offsets 
between release times. We give a scheduling policy and 
schedulability analysis algorithm for asynchronous sys- 
tems with lower-bounded but otherwise nondetennin- 
istic release times that is anomaly-free with respect to 
execution times and has bounded anomalies with re- 
spect to release times. 

1    Introduction 
It has been known for a long time that many multi- 

resource scheduling algorithms exhibit anomalous be- 
haviors, in the sense that simplifying the problem can 
increase response times. For example, a correctly op- 
erating system may suddently start missing deadlines 
when some tasks start consuming less execution time, 
e.g. due to data-dependent execution, or due to a 
software or hardware upgrade. A function may start 
missing deadlines when another function is turned off 
or fails. A small change in one execution time may 
cause significant changes in the order and timing in 
which other tasks start and complete. Similar anoma- 
lies can also occur with sporadic ta.sks, where an in- 
crease in the time between releases may cause missed 
deadlines. 

Eliminating, or at least minimizing, anomalous be- 
havior is useful in practice. Anomaly-free behavior 
decreases the likelihood that an upgrade to a system 
will have undesireable timing effects.   This property 
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may be useful to help assure time partitioning between 
applications, e.g. variations or aborts in one applica- 
tion will not introduce timing faults into others. Test- 
ing can be simpler and more confident, since worst- 
case performance can be achieved by testing with only 
worst-case timing parameters. The general reduction 
in nondeterministic timing and sequencing behaviors 
make debugging easier, and may permit reduced in- 
strumentation of systems. 

The scheduling approach we discuss assigns in- 
termediate deadlines for each step, then uses earli- 
est deadline first (EDF) scheduling on each proces- 
sor. Within this context, we present both a globally 
time-triggered and a globally asynchronous method. 
We show these methods avoid execution time anoma- 
lies in both time-triggered and asynchronous systems. 
Release time anomalies are absent in time-triggered 
systems, and are bounded and analyzable in asyn- 
chronous systems. 

2    Related Work 
The existence of execution time anomalies for job 

shop scheduling was first reported in the literature in 
a classical paper by Graham[3]. Jackson showed that 
optima! job shop scheduling does not require the in- 
sertion of idle times (unlike nonpreemptive job shop 
scheduline)[4]. Obserations about and generalizations 
of Jackson's result are central to our paper. 

Andersson and Jonsson have studied preemp- 
tive scheduling anomalies in multi-processor systems 
for tasks that are periodic but without precedence 
constraints[2]. They also consider dynamic realloca- 
tion, which is not normally addressed in an integrated 
way in the literature on end-to-end scheduling, and 
which we do not consider in this paper. 

The problem we address is a repetitive job shop, 
often called end-to-end scheduling in the real-time 
literature[6, 5]. Much of this literature implicitly ad- 
dresses what we call release time anomalies. The typ- 
ical reasons for this are temporal nondeterminism in 
external release times, and the release of an interme- 
diate step when its predecessor completes. Methods 
of scheduling and analyzing such systems implicitly 
bound any resulting anomalous behavior. As we dis- 
cuss shortly, unexpectedly early completion of a step 
is another rea.son why the release time of its succe.s- 



sor may vaiy. Execution time anomalies are (to our 
knowledge) almost never explicitly discussed in the lit- 
erature. 

3 Repetitive Job Shop 
Our results are primarily based on earlier job shop 

scheduling work, but our intended application is real- 
time computer systems. We choose to satisfy no one 
by using a mixture of terminology from the two fields 
in our definitions. 

We define a repetitive real-time job shop as follows. 
A job is a finite sequence of steps. A step is bound to 
one of a finite set of processors in the problem state- 
ment, which is the processor responsible for executing 
that step. A preemptive schedule assigns one or more 
intervals of time on that processor to a step, where the 
sum of the lengths of the intervals equals a specified 
step execution time. The last point in the last exe- 
cution interval in a schedule is called the completion 
time for that step. Each job has a release time, before 
which the first step of that job may not be executed 
(the start of that step's first execution interval in a 
schedule cannot occur before the job release time). 
Subsequent steps in a job may not begin execution 
until their predecessor step completes. A schedule is 
feasible if the final step in every job completes before 
a specified job deadline, otherwise the schedule is said 
to be infeasible. A deadline is specified as a value 
added to the release time, i.e. the deadline occurs a 
fixed interval of time after the release time. A task is 
a possibly infinite sequence of jobs, where the release 
time for each job does not precede the deadUne of the 
preceeding job in a task sequence. 

4 Scheduling 
A preemptive priority schedule uses a priority rela- 

tion Si -< Sj between every pair of steps that might 
ever be simultaneously executable on the same proces- 
sor according to the precedence rules of the previous 
paragraph. At any point in time at which a step is 
being executed by a processor, it is always the step 
that preceeds all other ready steps in the priority or- 
der. That is, whenever a processor is executing, it is 
always executing the highest priority ready step. 
Theorem: For every feasible schedule there is a pre- 
emptive priority schedule in which the completion 
time for every step is no greater than in the original 
schedule. 
Proof: Prioritize steps according to their completion 
times in the original schedule (an earliest completion 
first priority relation). Now transform the original 
schedule as follows. If any Si completes earlier than 
some 5j, but there is an interval during which both 
are ready but Sj is executing, then have Si rather 
than Sj execute in that interval. Si will complete ear- 
lier by just that duration; in the vacant interval cre- 
ated following Si by this earlier completion, execute 
Sj.   That is, swap the execution intervals of 5, and 

Sj that are not in priority order. This transformation 
can be repeated until a preemptive priority schedule is 
obtained, once in which no step completes later than 
in the original schedule. □ 

The preceding definition of a preemptive priority 
schedule permits inserted idle times, i.e. the processor 
need not be executing when steps are ready. We will 
call these lazy intervals. A schedule that has no lazy 
intervals is called a work conserving schedule. In a 
work conservaing schedule, no processor is idle when 
there are ready steps that it could be executing. 
Theorem (Jackson): For every feasible earliest com- 
pletion preemptive priority schedule, every step will 
complete at least as soon in a work conserving earli- 
est completion preemptive priority schedule as in the 
original (possibly lazy) schedule. 
Proof: Find the earliest lazy interval, resolving ties 
arbitrarily. Start executing the highest ready priority 
step in this interval rather than deferring it. Since this 
is the highest priority step, it must be the one executed 
in the interval immediately following the lazy interval. 
This transformation slides the executuion interval ear- 
lier in the schedule to fill the lazy interval, which is 
to say it swaps the lazy interval for this next execu- 
tion interval. Either this step then completes earlier 
(this step completes at the end of this interval), or this 
transformation has no effect on any completion time. 
This transformation may create a new lazy interval 
on the processor hosting the successor step, but this 
lazy interval occurs later than the original one. This 
transformation can be repeated to move lazy intervals 
later and later in the schedule, until they reach a point 
at which they are no longer lazy because there are no 
ready steps to be executed. Such points always exist 
because a feasible schedule never loads any processor 
beyond 100% utihzation. D 

5    Anomalous Scheduling 
We say a given scheduling algorithm (an algorithm 

that accepts a repetitive real-time job shop problem 
and produces a schedule) is anomaly-free with respect 
to execution time if, for any feasibly scheduled prob- 
lem, the execution times for any subset of the steps 
can be reduced and the scheduling algorithm will also 
feasibly execute this reduced-load problem. 

An optimal preemptive priority schedule for a clas- 
sical job shop (which is a special case of our repet- 
itive job shop) is one that minimizes the maximum 
completion time across all jobs (called the makespan). 
As the following theorem shows, there may be prior- 
ity assignments that achieve optimality but are not 
anomaly-free with respect to execution time (which 
we write as "anomaly-free w.r.t. execution time"). 
Theorem: An optimal work conserving preemptive 
priority schedule may be anomalous w.r.t. execution 
time. 
Proof: Figure 1 shows on the left an optimal schedule 
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Figure 1: Optimal but Anonomalous Preemptive Priority Schedule 

for a two job problem. The schedule is obviously opti- 
mal because the makespan is equal to the sum of the 
step execution times of either job (i.e. the makespan 
would not change even if either job were executed 
alone with no contention at all). The schedule on 
the right is obtained when the execution time for ^21 
is reduced, but work-conserving preemptive priority 
scheduling is applied with the same priority ordering 
S22 -< 5i2. The makespan increases. Note the priority 
ordering in the original solution was not a completion 
time priority ordering. D 

We say a scheduling algorithm is anomaly-free with 
respect to release times if. for any feasibly sched- 
uled problem, the intervals between the release times 
of pairs of sequential jobs can be increased and the 
scheduling algorithm will always feasibly execute this 
reduced-load problem. 
Theorem: There exists no scheduling algorithm that 
is anomaly-free with respect to release times. 
Proof: There exist problems that are feasibly sched- 
uled but where increasing an inter-release time creates 
an interval in which some processor would need to ex- 
ecute at over 100% utilization to meet deadlines. Fig- 
ure 2 shows such a problem. The original schedule was 
feasible because release times permitted an efficient in- 
terleaving of step executions, but shifting the release 
of a step in the modified problem now overloads the 
processor between two step release times and deadlines 
regardless of how it is scheduled. □ 

6    Anomaly-Free Scheduling 
Any preemptive priority schedule can be easily 

modified so that it is anomaly-free by rearranging 
priorities so they are in order of completion time. 
This post-processing step can easily (and we suggest 
should) be applied to any algorithm that searches for 
optimal priority assignments but has not been guar- 

anted to produce priorities in order of completion 
times. The following theorem justifies this. 

Theorem:  For every feasible schedule, a work con- 
serving earliest completion preemptive priority sched- 
ule is anomaly-free w.r.t. execution times. 

Proof: Construct the work-conserving earliest com- 
pletion preemptive priority schedule for the origi- 
nal problem (the one with worst-case step execution 
times). For a step that completes earlier than origi- 
nally specified, make the unused portion of the exe- 
cution intervals in the original schedule into lazy in- 
tervals, so that no other completion times change. By 
a preceding theorem, these lazy intervals can be re- 
moved to obtain a work-conserving earliest completion 
preemptive priority schedule in which no step com- 
pletes later than in the original schedule. D 

We can eliminate the possibility of anomalies w.r.t. 
release times by fixing them, which is what happens in 
globally time-triggered systems. In traditional time- 
triggered systems, a fixed global release time is as- 
signed to every step, i.e. run-time traffic regulators 
are used. We can relax this somewhat and still achieve 
anomaly-free behavior. We can use a work-conserving 
preemptive priority scheduler on every processor and 
still be anomaly-free w.r.t. execution times, if we use 
the following method for assigning priorities. Run- 
time traffic regulation is no longer required, which 
simplifies the implementation somewhat. 

histead of an intermediate release time, we instead 
assign an intermediate deadline to each step. The 
deadline of the final step in a job equals the job dead- 
line. These do not have to be checked or enforced 
nt run-time, correct operation could be assured us- 
ing off-line schedulability analysis. Priorities are then 
cussigned in order of these deadlines. Note that if the 
task shop is strictly periodic and repeats after some fi- 
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nite hyperperiod, then this can be accomplished using 
an off-hne assignment of fixed priorities to each step 
instance. Different steps within a task and different 
instances of the same step might have different prior- 
ities, so this priority assignment is closer to classical 
earUest deadline first than classical preemptive fixed 
priority scheduling. This is really a class of algorithms 
because we do not specify a particular algorithm for 
assigning intermediate deadlines, a subject to which 
we return in the final section. 

To see that this is anomaly-free w.r.t. execution 
times, first consider the schedule obtained when ev- 
ery step executes for its specified (worst-case) execu- 
tion time. In every case where two steps are ready 
at the same time, the step that completes first is the 
step having earliest deadhne. That is, the priority as- 
signment is consistent with completion times as well 
as deadlines. By a preceding theorem, such preemp- 
tive priority schedules are anomaly-free w.r.t. execu- 
tion times. 

We define an asynchronous scheduling model as 
follows. For each task, define a minimum job inter- 
release time and a deadline, where the deadline is 
never greater than the inter-release time. The first 
job of a task can arrive at any time, which becomes 
its release time (unknown until the job arrives). Sub- 
sequent jobs can arrive any time at or after the release 
time of the preceding job plus the minimum inter- 
release time. The deadline for a job occurs at a spec- 
ified interval of time following the release time. 

We define a class of scheduling algorithms for the 
asynchronous model that is anomaly-free w.r.t. exe- 
cution times as follows. When a job arrives at time 
T, we assign intermediate deadlines to every step in 
that job, where the deadline for the final step is the 
job deadline. At each processor, use earliest deadline 
first scheduling. Processor clocks need not be globally 
synchronized to implement this algorithm, but we do 

require that one processor be able to observe the lo- 
cal clock of another (with bounded error) at certain 
synchronization events. Given this capabihty, the in- 
termediate release times and deadlines for the steps 
of a job can be adjusted (with bounded error) by the 
difference of the processor clocks as part of the inter- 
mediate step release hand-shaking protocol. 
Theorem: The preceding class of algorithms is 
anomaly-free w.r.t. execution times. By this we mean, 
if the algorithm produces a feasible schedule for all 
possible allowed job release times, then it produces 
a feasible schedule for all possible allowed job release 
times when one or more execution times are reduced. 
Proof: For each fixed pattern of job release times, 
the pattern of deadlines is fixed. By the same rea- 
soning as above, the completion times for this pattern 
can only decrease after reductions in execution times. 
Every individual pattern is thus anomaly-free, so the 
schedule is anomaly-free for all possible patterns. 

7    Future Work 
We know the final class of algorithms discussed 

cannot be anomaly-free w.r.t. release times because 
completion times depend on the relative phasings of 
job releases. A schedulability algorithm that bounds 
worst-case response times for all possible phasings also 
bounds the anomalies w.r.t. release times. We con- 
jecture that the schedulability analysis algorithms of 
Spuri can be used for this purpose [5]. We conjecture 
the bounds on anomalies w.r.t. release times implied 
by these algorithms also bound any anomalies w.r.t. 
execution times. 

The conjecture stated at the beginning of this pa- 
per, that anomaly-free scheduling may contribute to 
more robust and easily modified and verified sys- 
tems, has intuitive appeal. Determinism is widely- 
acknowledged to be highly desireable in safety-critical 
systems, and adds theoretical complexity to demon- 
strations of equivalence and compliance between for- 



mal models. Totally determistic and anomaly-free be- 
havior isn't, possible in distributed systems, but bene- 
fits may accrue if these effects can be constrained. Our 
conjecture is perhaps more pragmatic than theoretical 
and needs to be assessed by experience. 

Anomalous behaviors can result in changes in the 
order in which the start and end of task executions 
occur. Nondeterminism in event orderings may com- 
plicate debugging and verification. A better formal- 
ization and understanding of anomalous behavior with 
respect to event order might be of use in problem areas 
such as instrumentation, visualization, syncyhroniza- 
tion and verification of distributed real-time systems. 
For example, the results noted in this paper imply 
that if a partial order is enforced on step deadlines, 
then a corresponding partial order will apply to step 
completion times. 

If we try to compare the theoretical efficiency of a 
globally time-triggered versus a globally asynchronous 
solution, we need to be careful about the actual timing 
requirements. For a sampled data system that period- 
ically samples a continuous input signal, we are pre- 
sumably free to pick the exact times of sampling and 
output (as long as they are periodic). The scheduling 
algorithm is free to slide these back and forth to inter- 
leave different jobs efficiently in time. Figure 2 showed 
an example that was unschedulable using the asyn- 
chronous model but feasibly scheduled using a time- 
triggered model. However, if the application requires 
bounded response times to external real-world events, 
then a time-triggered solution essentially polls the ex- 
ternal environment, and any polling latency must be 
added to the end-to-end latency of the time-triggered 
model. Taking these factors into consideration, it is 
an open question whether one approach is inherently 
potentially more efficient than the other for this prob- 
lem. 

We have not discussed the problem of picking 
good intermediate deadlines in time-triggered systems, 
which is presumably as difficult (in both theory and 
practice) as job shop scheduling. We have had some 
success applying a kind of temporal load balancing to 
fairly large problems abstracted from actual avionics 
systems (e.g. thousands of tasks and messages hosted 
on dozens of processors and busses). However, this 
has not yet been not generalized to the problem model 
presented here[l]. 

Our real-time task shop model assumes each job 
is a linear sequence of steps. In practice, fan-in and 
fan-out and feed-back control loops will appear. The 
latter might be dealt with by breaking each loop and 
imposing a suitable end-to-end deadline for the asso- 
ciated internal state update, so that a solution for the 
resulting acyclic graph might be sufficient for most 
practical purposes. 

We conjecture that global end-to-end scheduling al- 
gorithms, such as earliest job deadline first, or global 

least laxity (laxity computed using the sum of remain- 
ing step execution time and the final job deadline), 
are also anomalous. It is an interesting open question 
whether an anomaly-free scheduling algorithm exists 
that does not make use of either intermediate release 
time or intermediate deadline assignments. 
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Abstract We present a compositional approach to generate linear hybrid automata timing 
models, and Markovian stochastic automata safety models, from an architecture 
specification. Formal models declared for components are composed to form 
an overall model for the system, where the composition rules depend on the 
semantics of the architecture specification. We further allow abstract models to 
be specified for a subsystem of components, where the abstract model may be 
substituted for the concrete model of that subsystem when composing the overall 
system model. We assume both abstract and concrete models are given, we 
address the problem of verifying that the abstractions yield safe if approximate 
results. Ari abstract model may be viewed as a formal subsystem specification 
used for both conformance checking and improving the tractability of system 
analysis. 

Keywords:     architecture description language, formal specification, hybrid automata, stochas- 
tic processes, schedulability modeling, reliability modeling, system safety 

1.       Introduction 
Given a specification for the architecture of an embedded computer system, 

we want to generate and analyze formal models of system behavior. In this 
paper we discuss the generation and analysis of timing and safety models from 
specifications written in the SAE standard Architecture Analysis and Design 
Language (AADL) and its original research basis, MetaH[AADL 2004, MetaH 
2000]. 

An architecture is often informally described as an assembly of connected 
components. Overall system behavior is determined by the interactions be- 
tween components according to the way they are connected, which is to say 
system behavior is defined as acomposition of the behaviors of its components. 
We will associate formal models with individual components in a specification. 
The formal models for a complete system are defined as compositions of the 

•This work was supported by the US Air Force Otlice of Scientific Research under conlraci number F49620- 
97-C-0008. 



individual component models. In this paper, we use a type of hybrid automaton 
to specify real-time component behaviors, and a type of stochastic automaton 
to specify component fault and error behaviors. 

Architectures are specified hierarchically. Every component may have an 
internal implementation that may itself be specified as a set of connected sub- 
components. Given a component that has an internal architecture, a formal 
model for that component can be generated by composing the models for its 
subcomponents. We call this the concrete model for that component. We may 
also directly associate an abstract model with a component that is intended to 
be a safe approximation for the concrete model. When generating a system 
model from an architecture specification, we thus have a choice for each com- 
ponent whether to use its concrete model or its abstract model. A different 
choice can be made for different components at different levels of the design 
hierarchy, so that a fairly large set of mixed-fidelity models is possible. Hi- 
erarchical abstraction can both improve understandability and enable tractable 
analysis for large and complex specifications. 

We assume both concrete and abstract models are given, e.g. hand-developed. 
Our focus is on verifying that analyses performed when abstract subsystem 
models are substituted for concrete subsystem models are safe in some sense 
with respect to analyses of the fully detailed concrete models. In the case of 
our timing models, we show how to verify that classical periodic tasks are con- 
servative approximations for hybrid automata used in the AADL standard to 
define thread semantics, or hybrid automata that model reusable middleware. 
In the case of our safety models, we explore the relationship between abstract 
and concrete stochastic automata models. We expect the effort required to 
develop pairs of abstract and concrete models to be justified by high degrees 
of reuse; and that many pairs of abstract and concrete models will be based 
on common and easily modified design patterns. An abstract model may be 
viewed as a formal specification that is also usable to improve the tractability 
of analysis. 

2.       Related Work 
We borrow one of the fundamental ideas of process algebra[Milner 1989]: 

show that a large and complicated subsystem model can be replaced by a 
smaller and simpler subsystem model when performing overall system anal- 
ysis. We permit the smaller simpler model to be an approximate abstraction 
rather than requiring some notion of equivalence. We deal with hybrid and 
stochastic automata rather than purely discrete models. We use automata rather 
than programming language models[Cousot 1977]. 

CHARON and Hybrid I/O Automata (HIOA) exhibit many of these con- 
cepts[Alur et. al. 2001, Lynch et. al. 2003]. The notion of abstraction used 
in this paper also involves containment of reachable states or traces. We allow 
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looser definitions than the CHARON notion of refinement or the HIOA notion 
of implementation, for example we allow the sets of abstract and concrete vari- 
ables to differ. We allow fairly arbitrary abstractions to be specified and focus 
on verifying that they are adequate for the purpose at hand. CHARON and 
HIOA use more traditional ways to compose automata based on shared vari- 
ables and/or shared events, whereas we use a scheduler function to compose 
models of real-time tasks that interact by contending for shared processors. 

Markov (and more general stochastic) processes are well known to exhibit 
the state space explosion when trying to solve large models of complex sys- 
tems. This served to motivate the desire to use more computationally tractable 
abstractions. Early work established necessary and sufficient conditions for 
when abstractions of Markov chains were again Markov [Kemeny and Snell 
1976]. Considerable effort has beeii spent in developing efficient algorithms 
to find tractable Markov abstractions {e.g. [Derisavi et al. 2003a]). Other re- 
searchers have sought abstractions for which the solution is exact when the 
concrete model is a semi-Markov processes, which is more expressive than a 
Markov process [Bradley et al. 2003]. When a Markov process has no tractable 
abstraction that is again Markov, techniques for finding approximate abstrac- 
tions might be useful [Lefebvre 2002]. 

From a computer science perspective, process specifications typically be- 
gin with models of concurrent automata, to which various stochastic semantics 
have been applied. Considerable work has gone into linking conditions for 
when variants of stochastic automata are analyzable as Markov chains (e.g 
[Brinksma and Hermanns 2001, Deshamais et al. 2003]). Software tools have 
been developed to support specification of numerous modeling formalisms and 
abstractions coupled with a collection of optimized solution techniques for 
evaluating them (e.g. [Derisavi et al. 2003b]). 

3.       Timing Models 
Classical real-time scheduling theory deals with the scheduling and analysis 

of repetitively dispatched tasks[Liu and Deitel 2000]. The time between dis- 
patches is fixed (periodic tasks) or has a lower bound (sporadic tasks). There is 
an upper bound on the compute time at each dispatch (often called the worst- 
case execution time). The theory provides algorithms for optimal (in some 
sense) uni-processor scheduling and for tractable schedulability analysis of 
large sets of tasks. However, classical real-time scheduling theory deals with 
only very restricted forms of internal task behaviors or interactions between 
tasks (beyond contention for a shared processor resource). For example, tasks 
in an actual system may exist in a number of discrete states, e.g. halted, initial- 
izing, suspended, computing, recovering. 

Hybrid automata can model more complex dynamical systems[Alur et. al. 
1994]. A hybrid automaton is a classical finite state automaton plus a set of 



real-valued variables. The variable values may change continuously in a fixed 
location (a fixed discrete state), and may change discontinuously (may be as- 
signed) at discrete transitions between locations. The allowed transitions may 
depend on the variable values (edge guards may be predicates over variables). 
These additional behaviors are specified by annotating the edges and locations 
of the classical finite state automaton with various kinds of constraints. In this 
paper we limit our attention to linear hybrid automata, where constraints are 
expressed using linear functions. A state of a hybrid automaton consists of a 
location together with a real value for each variable. We use polyhedron to 
refer to a set of possible real values for the variables (e.g. specified as a system 
of linear inequalities), and use region to refer to a location plus a polyhedron. 
Composition rules exist to define semantics for sets of concurrent hybrid au- 
tomata. 

Figure 1.     Concrete Hybrid Automata Model T for a MeiaH Periodic Task 

Certain AADL thread semantics are defined in the standard using a hybrid 
automata notation[AADL 2004]. We have automatically generated linear hy- 
brid automata models for the portions of the MetaH middleware that perform 
preemptive scheduling and enforce time partitioning[VestaI 2000].  Figure 1 
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shows a hybrid automata model T for a periodic task. This model was automat- 
ically generated from the MetaH middleware code, i.e. it shows task behavior 
actually implemented by the middleware (excluding stopping and restarting 
at dynamic architecture reconfigurations). We use 6x as an abbreviation for 
Sx/6t. The choice for 5c = {0,1} is made as follows. 

We do not use shared variables or shared edge labels (synchronized transi- 
tions) to compose multiple automata. Instead, we use a scheduling function 
that defines the rates at which compute times accumulate as a function of the 
current set of task locations (e.g. as a function of which tasks are in ready 
states)[Vestal 2000]. Let/ =< lii,l2j, - > be a location vector for a system 
of automata, i.e. In is a location from automaton Ti, hj is a location from au- 
tomaton T2, etc. A scheduler function < 5vi,5v2, — >= 'S'(< hi,hj, — >) 
(also written 6v = S{1)) defines the variable rate vector as a function of the 
system location vector. In our example, the scheduler function always sets 
M = l for timers t, and sets 6ci = lif task i is executing and 6ci = 0\f task i 
is preempted for that system location (for that set of contending ready tasks). 

Unfortunately, analyzing schedulability by model-checking systems of hy- 
brid automata is not currently very tractable. We have done this for pairs of 
different kinds of tasks during the MetaH middleware verification exercise, but 

. revolutionary advances in hybrid automata model-checking are needed to con- 
sistently analyze even a dozen non-trivial concurrent task models. We instead 
explore how to verify that a complex hybrid automaton task model (such as 
one defined in the AADL standard) can be safely approximated by a classical 
real-time task model for the purpose of schedulability analysis. 

assert ('<200000 

Awaiting_Dispalch 
ec'=0, ai'=l 
l'<200000 

Figure 2. Abstract Hybrid Automata Model T' for a MetaH Periodic Task 

Figure 2 shows an abstract hybrid automaton specification T for a periodic 
task having a period of 200000 time units and a worst-case compute time of 
100000 units. We assert this formally specifies a classical periodic real-time 
task, slightly extended by the addition of a Failed state. We define a mapping 
between this abstract automaton and the concrete automaton of Figure 1 as 
follows. 

We define a many-to-one mapping of concrete to abstract locations, / = 
a{l) for abstract location I' and concrete location I. Every initial concrete lo- 



cation must map to an initial abstract location. Our example mapping is il- 
lustrated in Figure 1 using shaded ovals to represent the abstract locations to 
which the concrete locations are mapped. We define the value of each abstract 
variable as a linear function of the concrete variables, i\ = fi{vi,V2,...) for 
each abstract variable t( and concrete variables Vj (also written v' = f{v)) . 
For our example, if = t and c^ = c + r. Each initial valuation for the concrete 
variables must map to an initial valuation for the abstract variables. 

Assume we are given a system of abstract tasks 7^,..., Tl,... having an ab- 
stract scheduler function Stf = S'{1'). We can view this as an abstract specifi- 
cation for scheduling a system of tasks. We can modify this system by replac- 
ing some particular 7^ with a concrete Tj, with suitable changes to the domain 
and range of the scheduler function. 

We constrain the modified scheduler function 5 obtained from the abstract 
S' so that all concrete locations that map to the same abstract location are 
equivalently scheduled, and concrete scheduler rates are consistent with ab- 
stract scheduler rates. Assume that, due to the replacement of 2/ by Tj, abstract 
variable v,' is removed from the range of S and concrete variables iji,... where 
^i — /i(^ti> ■••) are added. For unreplaced abstract variables ifj, 6vj = S'(< 
...,/',... >) = Sj{< ...,l,... >) whenever a(Z) = /'. For substituted vari- 
ables, Svl = Si{< ....,!'.... >) = Sfiivn,...) with Svij = 5,-,(< ...,l,... >) 
whenever a{l) = I'. 

We assert that the original abstract system can be analyzed using a classical 
schedulability analysis algorithm appropriate to the abstract scheduling func- 
tion S'. If the reachable regions of the modified system are contained in those 
of the original abstract system (after applying the variable abstraction function) 
for all feasibly scheduled abstract systems, we assert that the abstract system is 
a safe approximation for the modified system for the purpose of schedulability 
analysis. 

To formalize the notion of containment in the presence of variable abstrac- 
tion, let P'^ be the system of linear inequalities obtained from an abstract 
P' by substituting for each abstract variable t| its linear abstraction function 
fiivi,V2,...). Only concrete variables appear in P^. We say that concrete P 
is contained in abstract P' if P C P'i 

We verify by model-checking that a modified S derived as explained above 
from a feasible abstract scheduler ff will always feasibly schedule 7^. First, for 
our example pair of abstract and concrete models we restrict our attention to 
schedulers that are functionally equivalent to the set of constant rate schedulers 
5'(...,Computingi. •••) ^ V^. i-C an abstract scheduling function is feasible 
for this example if it allocates at least 50% of the processor to Tl between its 
release time and deadline while Ij is in its compute state. Second, we construct 
a specific S that satisfies the conditions above, one that sets Sc = 1/2 and 6r - 
0 in all concrete slates that map to the abstract computing, except 6r = 1/2 
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and 5c = 0 in the recovering state. For our MetaH example, both abstract and 
concrete scheduler functions are preemptive fixed priority schedulers. (Note 
that, as one might expect, a number of concrete schedulers could be defined 
that satisfy the above conditions on the relation between abstract and concrete 
scheduler functions.) 

Using these abstract and concrete scheduler functions, we applied a region 
enumeration tool to both an abstract and a concrete task model. Then, for 
each reachable concrete region (Z, P) where I is a concrete location and P a 
polyhedron in the concrete variable space, the tool verified that there was some 
reachable abstract region (Z',P') such that I' = a{l) and P C P'K Note 
this is a conservative containment test, sufficient but not necessary, because in 
principle P might be contained in a union of abstract polyhedra but not in any 
single abstract polyhedron. 

The condition that S is indistinguishable from 3 for all concrete locations 
that map to the same abstract location means the scheduling of a given task 
model is the same regardless of whether it is being composed with abstract 
or with concrete models. We can thus make this substitution for any arbitrary 
subset of tasks to produce mixed-fidelity models that range from all abstract to 
all concrete. 

This worked for our example concrete MetaH task model by design, in the 
sense that the task scheduling implementation was designed to present a clas- 
sical real-time workload. This enabled accurate schedulabilify analysis for 
implemented systems, at least to the degree we could verify the implementa- 
tion satisfied the abstraction (subsequent hybrid system model generation and 
checking revealed some implementation defects [Vestal 2000]). The advent of 
hybrid automata methods (largely occuring after the original MetaH design) 
and abstraction methods (such as those presented here) can hopefully enable 
more rigorous and defect-free development in the future. 

Abstraction methods such as that presented here might be used to produce 
mixed-fidelity hybrid automata models that are more tractable to model-check. 
Our earlier experience suggests that expanding only two or three out of a dozen 
abstract tasks into their fully detailed concrete models might yield a tractably 
analyzeable model[Vestal 2000]. This might be useful, for example, to verify 
some complex interaction protocol between a pair of tasks. 

Our use of model-checking to verify containment of concrete behavior within 
abstract behavior required us to constrain the class of abstract and concrete 
schedulers and the mapping between them. It would be useful to verify that 
the abstraction is a safe approximation for the concrete for broad classes of ab- 
stract and concrete schedulers and mappings. For example, it might be possible 
to permit a (mapped) concrete scheduler rate to exceed the abstract rate under 
certain circumstances. This might make it easier to deal with things like differ- 
ent scheduling priorities for different concrete locations, or bounded blocking 
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times, which would be of significant practical utility. It might also be pos- 
sible to prove more complex cases of containment using an explicit detailed 
abstraction mapping between concrete and abstract invariants and edges (in- 
cluding guards and assignments), rather than model-checking with constrained 
scheduler functions. 

4.       Safety Models 
We now revisit the same general problem addressed in the previous section, 

but rather for safety models than for timing models. The AADL Error Mod- 
eling Annex defines language features to specify stochastic models for fault, 
error and failure behaviors in embedded computer architectures[AADL 2004]. 
A stochastic automaton approach is used[Brinksma and Hermanns 2001] for 
specification. The rules for composing individual component stochastic au- 
tomata depend on the specified architectural structure, i.e. depend on the pos- 
sible error propagation paths between components that interface to or depend 
on each other. Propagation modifiers can be specified to make propagation 
conditional, which allows consensus and voting protocols to be modeled. 

An error model for a system specified as a nested hierarchy of components 
can be obtained by composing the error models for its subcomponents accord- 
ing to the rules of the language. However, another option is made available: 
the user can specify a subsystem error model that may optionally be substituted 
as an abstraction for the concrete compositional model. Propagation modifiers 
can also map one error into another. This makes it easier to compose legacy 
models or models developed at different levels of abstraction. (Legality rules 
are included in the annex to enable automatic verification of error model com- 
patibility within an overall architecture specification, or identify places where 
such mappings are needed.) 

The remainder of this section is organized as follows. We introduce Markov 
processes, the modeling language to which stochastic automata specifications 
are translated before solving the system. We suggest rules to preserve safety 
properties when going from concrete (larger) steady state Markov models to 
abstract (smaller) steady state stochastic models. Abstractions of several steady 
state Markov models are presented. Steady state analyses are computationally 
much simpler to find than transient analyses. 

We show that the transition rate assignment in the abstract model is uniquely 
determined by the transition rates of the concrete model when the abstraction 
is "lumpable". When the abstraction is not lumpable, rate assignments in an 
abstract model need not be uniquely determined. We discuss selection criteria 
for "reasonable" assignments from an engineering perspective when possibly 
infinite (beyond a constant rescaling of all transition rates) assignments will 
satisfy the constraints of the abstract model. For safety analyses, transient 
solutions are generally required. We discuss conditions for preserving safety 
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in transient models. We close with an illustration of how Markov chains are 
composed at the (AADL) specification level. 
4.1 Brief Markov Process Introduction 

The reader is assumed to be familiar with Continuous Time Markov Chains 
(CTMCs) at an introductory text level (e.g. [Hoel et. al. 1972]). We use stan- 
dard notation for describing CTMCs, which unfortunately has some overlap 
with hybrid systems notation. Hopefully the context will make clear the use. 
The notation we use to specify and solve CTMCs is compactly defined in Ta- 

Description 

A finite discrete set of systen states. Typically, 5 = {1, 2,..., m}. 
Elements in S. x,y & S. 
System state at time t>O.X{t)eS for all t > 0. 
Instantaneous rate of change from state x to y for x / y. The set {qxy } de- 
scribes the infinitesimal generators of the CTMC. For x = y, QXX — -QX — 
-J2   ;_/ \ Qxy In practice, qxy is known or must be approximated {e.g. the 
failure rate of a component, perhaps given by a vendor specification). 
The infinitesimal generator matrix. Denote (A)ij = qij. 
The transition rate out of state .T. For a CTMC, this means the probability that 
a process in state x will remain in state x for a time greater than t is e~'' . If x 
is a death state (with no transitions leaving x), then QX = 0. 
A diagonal matrix, with Dxx = Qx and Dxy = 0 for x^ y. 
The probability of transition from state x directly to state y given the system is 
about to transition out of x ^ y. Qxy = qxy/qx for x / j/. 
The probability that X{t) = y given that X{0) = x. Or, the probability that a 
process X in state x will be in state y after t time has elapsed. 
The steady state distribution.   That is TT  =   (7ri,7r2, ....TTm), where TVX   = 
lim(_ooP(A'(t) = x).  For a CTMC, TT satisfies 7rA = 0.  For a Discrete 
Time MC (DTMC), TT satisfies -nQ = n. Also require ^^j TTJ = 1, to fully 
constrain the model.   

Table I.    Continuous Time Markov Chain (CTMC) Notation 

ble 1. When considering limiting distributions, we assume there are no death 
states and the limiting distribution does not depend on the initial distribution. 
That is, we assume the CTMC is ergodic and regular. 
4.2 Examples of Concrete Continuous Time Markov Chain Models 

We give three Markov models used in subsequent examples. Models are 
concrete when no further detail is captured in any of the states or transitions. 

The model shown in Figure 3 is the simplest possible Markov process that 
can represent a single repairable component (SRC). The right hand side shows 
standard notation. The left hand side is an equivalent, yet more compact rep- 
resentation that we adopt. In Figure 3, 6 - {1,2}. When in the operational 
state (1), faults occur at rate A, when the process transitions to the failed state 
(2). The failed system returns to operational when the repair event has been 
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effected, which occurs at rate /i. When repairs are not instantaneous, the repair 
completion time is equated with the repair event epoch. Table 2 summarizes 

cjy^'^CD    = 

Figure 3.     Failure/Repair Transition Notation and SRC Model 

these transitions and gives the steady state distribution. 

X e (5 (x,y) 9x1 9iy TTi 

1 
2 

(1,2) 
(2:1) 

-A 

-M 
A 
A* 

^•(Ai + A)-' 
A(M + A)-' 

Table 2.    Single Repairable Component Markov Process Specification 

For our second example, we consider an abstraction that aggregates a se- 
quence of events, which may be desirable in practice. Figure 4 show a process 
consisting of a sequence of four events reduced to three events. 

Figure 4.     Markov Cycle Models (Right abstracts Left) 

The last example is a triple modular redundancy (TMR) system with three 
independent and identical components, Q, C2, and C3. Components are either 
working or failed, with failure and repair rates A and //, respectively. System 
state is defined by the state of all components, with "operational" states as two 
or more components are working. Figure 5 and Table 3 show the TMR Markov 
process, parameters, and steady state solution. 
4.3 Safe Abstractions of Concrete Models 

Superscripts a and c are used to distinguish between abstract and concrete 
models. For example S° and S''- denote abstract and concrete states, respec- 
tively. To ensure safety properties, we propose two rules for defining abstract 
models in terms of concrete models. 

(1) To ensure that concrete states are not split and distributed among multi- 
ple abstract states, we recommend that the concrete states are partitioned where 
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Figure 5.     Markov TMR Model 

op comps state X gx up? TTi Abs 1 Abs 2 
{1,2,3} 1 -3A yes t^'-in + x)-^ pa. P"' 
{1,2} 
{2,3} 
{1,3} 

2 
3 
4 

-(2A + //) 
-(2A + //) 
-(2A + M) 

yes 
yes 
yes 

ifi'X)-{tM + X)-' 
{^l^x) ■ (/z + A)-^ 
(M^A)-(/. + A)-^ 

Pa"' 

{1} 
{2} 
{3} 

5 
6 
7 

-(A+ 2/.) 
-(A+ 2/.) 
-(A + 2,x) 

no 
no 
no 

(/.A^)-(M + A)-^ 
(MA^)-(,. + A)-3 

(MA=')-(M + A)-^ 

Pa"' P2"'' 

0 8 -3M no A^-{/. + A)- P4'"' 

7afc/e .1    TMR Markov process specification for Figure 5 

each partition corresponds to a single abstract state. When ^ = {1", 2",.... m"} 
then a partition on S'^ — \J^i Pf is defined so that j" = {x\x G Pj} and 
j° n i" = 0 for j" 7^ i°. For a "safe" steady state abstraction, assign probabil- 
ities to the abstract states by: 

For X eS°', assign TT" = Y1'"'P '^^^ere j e P^nS'^. 

When error states are aggregated in an abstraction, this assignment ensures that 
the probability of the error in the abstraction is not reduced. 
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This state aggregation (or partitioning) rule is consistent with the abstraction 
model of heirarchical decompositions. It is also intuitive when system states 
correspond to the (discrete) operational condition of physical components. For 
dependent faults an abstraction that "splits probabilities" across states might 
result in a better approximation. Further investigation is needed to determine if 
this heirarchical decomposition rule eliminates a number of useful abstractions. 

(2) We further suggest that a one step transition from x G (P to y € 5°, 
q^y > 0 only if there exists some 3/ e P^ C 6'^ and some 1/ e Py C 6'^ such 
that q^,y, > 0. This preserves a notional mapping from the abstract model to 
the system through the established mapping from the concrete model to the 
system. More importantly, it implies that errors in the abstract model cannot 
propagate in ways that were not specified in the concrete model. 
4.4 Transition Rate Assignments for Safe Abstractions 

We give three examples of safe steady state probability assignments for ab- 
stractions using the two step process in Section 4.3. We investigate the rela- 
tionship between safe probabilities and rate assignments. 

The right side of Figure 4 shows an abstraction of a four cycle model which 
merely collapses two states into one. Equation 1 gives the steady state solution 
of the concrete cyclic model in Figure 4. 

TT'^    = C7rf TTS TTS TT?)    =   (A|A^A;,AfAgA;,A;A|AS,AfA|A^) .. 
n {T^l,Tr2'^3>T^4)     — A|A|A5+Af A^A^+Af A^AJ+Af A|Ag ^^' 

For the reduced model on the right of Figure 4, a similar computation gives 
TT" = (7rf2,7r3.7r4) in terms of transition rates A12, A3 and A4. A solution that 
preserves exiting transition rates in non-aggregated states of A° is 

Ai2 = (^fAi)(Af-f-A^)-i;   Af-A^:   and AJ - A^. (2) 

The solution in Equation 2 is not unique (four concrete parameters define three 
abstract parameters). 

For the TMR example of Figure 5 we consider two abstractions. The two 
right most columns of Table 3 define the abstraction partitions. Abstraction 
1, which defines abstract states by the number of operational components is 
shown in Figure 6. Section 4.5 shows this is a lumpable abstraction with unique 

Figure 6.     Number of Operational Components TMR Abstraction 

(relative to the concrete model) transition rates, and how to compute them. 
A courser abstraction of the TMR model is simply the two state model, 

5" = {1;2} = {up,down}. This abstraction is shown with shading in Fig- 
ure 5 and also in the right most column of Table 3. When approximated by a 
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Markov process, this abstraction is represented in Figure 3. Equation 3 is the 
result of equating the two formulations for TI", which does not have a unique 
assignment. The abstract model parameters must sastisfy 

A7,i« = (AV/i'^)' • (A-^ + 3/.^)/(3A<= + M') (3) 

In general, partitioned (abstract) processes are not Markovian, in which case 
the rate assignment need not be uniquely determined. The question is which 
assignment of values produces the best results from an engineering perspec- 
tive. Is it preferable to hold constant the flow in, the flow out, the ratio of the 
flow in to the flow out, or some other property? One can envision practical 
circumstances which would favor each of these decisions. 
4.5 Lumpability, Safe Abstractions and Rate Assignments 

We define necessary and sufficient conditions for when the partitioned ab- 
straction is again Markovian. Our discussion of strong lumpability forDTMCs 
follows the presentation in [Kemeny and Snell 1976]. 

Consider a partition P on 5 with k < m elements. Define Uk,m and Vm.k 
according to P as follows. The /'' row of U puts a probability distribution 
on the elements in Pj. For example, if Pj contains hj states over which the 
uniform distribution is to be placed, then 

_ / 1/6,     for s e Pj (4) 
otherwise ^3.s - I   0 

The rows of a matrix V define the partition to which the state belongs. I.e. 

V ■ = [^     forsGP,- (5) 
*'^     \ 0   otherwise 

Theorem 1 gives conditions for strong lumpability with respect to partition 
P of a Discrete Time Markov Chain (DTMC). 

THEOREM 1 (DTMC STRONG LUMPABILITY) Let P be a partition for 
the DTMC with state space 5 and transition matrix Q. Let U and V be matrices 
defined by Equations 4 and 5 with respect to P. The DTMC is said to be 
strongly lumpable with respect to P if and only if 

VUQV = QV. 

For a proof see Theorems 6.3.4 and 6.3.5 of [Kemeny and Snell 1976]. 

Theorem 2 is an easily obtained analog for conditions of strong lumpability 
in a Continuous Time Markov Chain (CTMC). 

THEOREM 2 (CTMC STRONG LUMPABILITY) Let P be a partition for 
the CTMC with finite state space 6 and infinitesimal generator matrix A. Let 
U and V be matrices defined by Equations 4 and 5 with respect to P. The 
CTMC is said to be strongly lumpable with respect to P if 
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VUD-'^AV = D-^AV 

where D = -diag{A). That is, D is a diagonal matrix with [D)ii = -{A)ii. 
To show this result, note that the DTMC transition matrix Q = LT'^A^- I. 

An application of Theorem 1 gives 

VU{D-'^A + I)V = (D-M + I)V. 

Since UV = I, the result follows. 

The rates for the abstract model are found by computing A" - UAW. An 
algorithm for finding the coursest (i.e. the most abstract) strongly lumpable 
mode! is given in [Derisavi et al. 2003a]. This algorithm has computational 
complexity 0{\Q^\ ■ log2(|i5^|)) and space 0{\Q^\ + \6^\), where |g<=| is the 
number of positive transitions in the concrete model. 

Weak lumpability occurs when the lumped process is Markov when starting 
from some (but not all) initial distributions ([Kemeny and Snell 1976]). Work 
has been done linking both strong and weak lumpability MP results to the same 
properties in stochastic automata(e.g. [Brinksma and Hermanns 2001]). 

Investigation as to whether lumpable partitions create natural ahd useful 
abstractions for system models is needed. When an abstraction is not lumpable, 
a measure of "near lumpability" has been proposed as a measure of the quality 
of the approximation. 
4.6 Time Dependent or Transient Solutions 

For a time dependent analysis, we define safety for an abstract model with 
partition P as follows. Let x G Pj C 5^ be a non-fault or safe set of states and 
y G Pf C S'^bea "fault occurence" set of states. The abstraction is said to be 
safe in the time interval [0, T] 

Pso(X°(0 = r) > P^{X{t) ePf)^xePs and Vt e [0,T].     (6) 

In words, we require for all t G [0,T] that when starting in safe abstract state 
s°, the probability of reaching abstract fault state f is at least as great as the 
probability of reaching any state in partition Pj when starting from in any state 
in partition Pg in the concrete model. 

When the concrete Markov process is started in steady state Tf, then for ev- 
ery time f > 0 and for all x € 6", the P-n{X{t) = x) = TT:,. When the abstrac- 
tion is strongly lumpable (hence Markovian), the requirements of Equation 6 
are satisfied because probabilities sum within partitions and the distribution of 
time to transition from all states in a partition to another partition is the same. 

We are not sufficiently familiar with the literature to be able to report whether 
a transition assignment that can satisfy the requirements of Equation 6 exists 
for an arbitrary complex fault model with a non-lumpable abstraction. Perhaps 
an equally important question is how those conditions might be applicable for 
guiding the development of practical fault models. 
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propagator receiver 

Figure 7.     Error Propagation Between Markov Models 

4.7 Composing Concurrent Models 
Figure 7 illustrates the basic idea behind composing multiple Markov chain 

component models, one Markov Chain per component. The user may distin- 
guish selected states as error propagating states, which is modeled as a self- 
transition with a given error propagation rate. For an error that may propagate 
from one component to another (determined by the architecture specification), 
the rate of a transition in the receiving model is determined by the rate of the 
propagating transition rather than a rate specified in the receiving model. A 
fundamental result of stochastic process algebras is that, under suitable restric- 
tions, such rendezvous between concurrent stochastic processes have Poisson 
rates. Once this rate has been determined it can be used for the rate within the 
receiving model, and the methods of the preceeding sections applied to verify 
an abstraction. Similarly, self-transitions can be added to an abstract model to 
define propagation rates to be used in other receiving models. 

The AADL Error Model Annex includes a way to define guards on error 
transitions to model things like voting and consensus protocols. In other words, 
additional language features and semantics are included to compactly spec- 
ify complex event propagation conditions. More research is needed to deter- 
mine when high level abstractions are closely approximated by the generated 
Markov abstractions. 

5.       Future Work 
We have given only two examples of techniques that can be used to demon- 

strate that an abstract model can safetly (in some sense) be substituted for 
a more complex concrete model when generating hybrid and stochastic au- 
tomata models from architecture specifications. Preliminary approaches for 
linking MetaH/AADL safety specifications with concrete and abstract Markov 
models with solvers have been reported [Binns et al. 2000]. A more complete 
toolbox is needed. Also, more complex notions of abstraction may be useful, 
for example conformance relations[Krichen and Tripakis 2004]. 
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Real-Time Sampled Signal Flows through 
Asynchronous Distributed Systems 

Steve Vestal 

Abstract- We present a new model of real-time periodic 
distributed asynchronous computation in which information 
flows through sequences of periodic tasks, where task inputs are 
obtained by sampling other task's outputs as well as sampling the 
environment. We introduce a metric for end-to-end timing called 
the age of an output, which is the time since the external inputs 
on which an output value is based were sampled. We present 
some bounds on age scheduling efficiency, reduce the problem of 
finding a feasible distributed age schedule to finding a solution 
for a system of nonlinear constraints, and discuss use of a 
commercial solver to find a solution to a large problem derived 
from a real-world system. 

Index Terms- real-time, asynchronous, distributed systems 

1.   INTRODUCTION 

Many large distributed control systems are built by 
plugging together components that operate periodically using 
their own internal clocks. For example, a sensor periodically 
samples the environment, a bus periodically conveys data 
from the sensor to a processor, the processor periodically 
executes tasks that operate on sensor data. If all these 
components operate using separate and unsynchronized 
clocks, then we could say that the bus periodically samples the 
sensor and the processor periodically samples the bus, 
analogous to the way the sensor periodically samples the 
environment. We present a model for this kind of distributed 
asynchronous system, one in which sampling may occur at 
internal asynchronous interfaces between components. 

Perhaps the most widely-used metric for end-to-end timing 
in distributed system is latency, which is the time between the 
arrival of an external data value and the time at which the 
corresponding output value arrives at its final destination. 
However, this metric does not work well for our model for at 
least three reasons. First, while it is reasonably clear what 
latency means for a linear sequence of precedence-constrained 
tasks, it is not as clear what latency means for less restricted 
connectivity graphs in which an output may be computed from 
multiple inputs. Second, this metric applies to each data 
value, which passes in a loss-less manner from task to task. In 

This work was supported by Honeywell and the US Air Force Office of 
Scientific Research under contract F49620-0I-C-0024. Steve Vestal is with 
Honeywell Laboratories, Minneapolis, MN 55418 USA (e-mail: 
Steve.Vestal® Honeywell.com) 

our model, values may be lost internally, for example due to 
under-sampling of a data flow that goes from a high-rate to a 
low-rate task. Third, it is not additive in the sense that end-to- 
end latency is not the sum of the latencies through each task. 
We present a new metric called the age of an output value. 
Intuitively, the (worst-case) age of an output value is the 
(worst-case) time since the external input values on which that 
output is based were sampled. 

An age scheduler selects task sampling periods as well as 
decides which among a set of ready tasks is executing on each 
processor. For uni-processor age scheduling, we derive 
bounds on achievable age utilization, and on the ratio of 
classical to aged utilization. For multi-processor age 
scheduling, we formulate the problem of selecting a set of 
good periods for each processor as a non-linear constraint 
satisfaction problem. We also bound the efficiency of an 
asynchronous sampling system relative to an idealized fast 
uni-processor. Finally, we describe the use of a commercial 
non-linear optimization tool to solve a problem derived from a 
large real-world avionics system. 

II.   PREVIOUS WORK 

Most work on end-to-end timing in real-time systems 
models a task as a linear sequence of subtasks [1,3,4]. The 
first subtask in a sequence is released according to some 
temporal constraint (e.g. periodic, minimum inter-arrival time, 
arrival curve). Each subsequent subtask in the sequence is 
released when its predecessor finishes. The end-to-end 
latency for each task is defined to be the time between the 
release of the first subtask and the completion of the last 
subtask in that sequence. The worst-case end-to-end latency 
for that task is the largest such value for all releases of that 
task. 

We present a different model for distributed asynchronous 
systems that, to our knowledge, does not appear in the 
literature. We restrict our attention to tasks having periodic 
release times. In our model, every subtask has its own 
periodic release, each subtask samples its predecessors. Each 
subtask is its own independent sampled data system, sampling 
all its inputs and using a zero-order hold for all its outputs. In 
the standard model, there is no loss of data between subtasks 
in a fault-free system. In this model, data may be lost due to 
under-sampling by one subtask of its predecessor subtask's 
outputs. In this model, we are not restricted to linear 
sequences of subtasks, the flow of data between subtasks can 
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be an arbitrary directed graph. 
Both the standard and our model are similar in the 

assumption that subtasks have a fixed allocation to processors. 
The allocation problem, and the scheduling and schedulability 
analysis problem, are handled separately. 

III.   ASYNCHRONOUS SAMPLING SYSTEMS 

We first introduce our model and terminology for a periodic 
task hosted on a single processor, illustrated in Figure 1. A 
processor is a piece of hardware able to execute periodic 
tasks. A task hosted on a processor is periodically dispatched, 
where the dispatches are exactly Ttime units apart. A task can 
access input and output ports associated with its hosting 
processor. Following each dispatch, the processor will sample 
input ports and perform work for that task, scheduled in a 
manner chosen for the processor. When C units of work are 
completed following a dispatch, the task writes output values 
into output ports. The time between the dispatch and the 
writing of the output value is called the latency L.  Note that 
latency is defined relative to the dispatch instant, not the times 
at which inputs are sampled. 

We use processors and tasks to abstractly model several kinds 
of hardware resources and activities. Thus, a processor may 
model a computer, or a switch, or a bus or network link. A 
task may model a software computation or a message 
transmission. 

We assume that T is the same between every dispatch, but that 
C and L may vary. Note that our definition allows inputs to be 
sampled and outputs to be written at different offsets from the 
dispatch for different dispatches (i.e. our model admits jitter). 
Unless specifically stated, we use C and L to denote the worst- 
case (supremum) work and latency for all dispatches, where L 
denotes the worst-case latency for any output of a task. We 
assume 0 < C < T and C < Z,, but not necessarily L<T. 

We think of reading an input port as sampling a continuous 
input signal, and writing an output port as setting the value of 
a continuous zero-order hold output signal. The intervals of 
time between successive samplings of an input and between 
successive settings of an output, although T on average, may 
vary somewhat due to the way a processor is scheduled. 

A system has a set 0 = {p^, p^ ,.../7,v„ } of N^ processors 

and a set T = {r|,r2,...r^,^ } of A'v,, tasks'. We use T^to 

denote the subset of tasks hosted by processor p, where we 
assume a static assignment or binding of tasks to processors in 
this paper. 

A system, illustrated in Figure 2, has a set 

O = {^1, ^, ,—<t>N<,} 0^ ^c ^ows. A flow ^ is a cycle-free 

ordered sequence of tasks "^ i\','^ AI,—T ^^ of length A^,. 

The first task in the sequence samples a designated input port, 
the last task in the sequence writes a designated output port, 
and each intermediate task samples an output of its 
predecessor and writes to an input of its successor. We use 

T^ to denote the subset of tasks in flow^.   Note that a task 

may appear in multiple flows. The set of flows is a specified 
subset of the paths in an arbitrary task graph between pairs of 
input and output ports (which need not be external ports). 

We assume that every task is included in at least one specified 
system flow. However, we do not assume that a specification 
includes all possible flows in a system. Rather, we assume 
that the developer specifies a tractable set of flows that 
capture the timing requirements of the system. 

' Throughout we use lower-case Greek letters lo denote intuitively defined 
abstract entities such as processors and tasks, upper-case Greek letters to 
denote sets of such abstract entities, lower-case Roman letters to denote 
indices for elements of sets, and upper-case Roman letters to denote real- 
valued parameters of the models 
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processor 

input 
port 

output 
port 

. T - 

^— c- 
timeline 

I i 
sample       output sample 
Fig. 1. Model and notation for a single periodic sampled-data task hosted on a single processor.. 

output 

The interconnect topology between processor ports, the set of 
ports accessed by each task, and the hosting specifications 
HP  , have some well-formed-ness constraints based on the 

specified flows. However, it is not necessary for the purposes 
of this paper to formalize these fairly intuitive constraints. 

A fundamental assumption of our model is that processors 
operate asynchronously with respect to each other. Given any 
pair of tasks on different processors, we make no assumptions 
about the relative phase or offset of their dispatches, and our 
analyses cover all possible phasing. The scheduler on each 
processor may, however, control the phasings between the 
tasks hosted on that processor. As we will see, this can affect 
the end-tb-end timing of flows. 

IV. FLOW AGE 

We now turn to the question of specifying system timing 
requirements. It turns out that defining a natural notion of 
end-to-end latency is not straight-forward. For example, the 
latency of the system is not the sum of the latencies along a 
flow. To see this, imagine a flow where all tasks have very 
small latencies but one of the tasks has a very large period. 

From a feed-back control perspective, both sampling period 
and latency are important, but we would like a metric that 
does not assign a special role to the period of the first (or last) 
task in a flow. 

We introduce a new timing metric that we call the flow age. 
The age of a flow is the amount of time by which the output 
signal is oiit-of-date with respect to the input sample used to 
compute that output. The exact value of the age is a function 
of time. The age steps to some value when an output is 
written, then increases with time until the next output value is 
written. The worst-case age is the largest age that occurs at 
any point in time. We assume every output is initialized to 
some specified value at time 0, so that the initial age of an 
output equals the time since the system began operation until 
the first write is made to that output. We codify these concepts 
in the following results. 

Lemma 1: The worst-case age of a flow that consists of a 
single task r, that samples an external input is 7] + Z-,. 

Proof:   We first walk through the timeline of events 
assuming no variability in any of the parameters, illustrated in 

Fig. 2. Data flows through a system of asynchronous periodic sampling tasks and processors. 
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Figure 3. At the moment the input signal is sampled, the age 
of that sample value is zero. If this sampling occurs at the 
dispatch instant (the earliest time possible), then the age of the 

output signal becomes £, at the moment the output value is 

written by the task. The age of this output continues to 
increase until the moment at which the next dispatch 
completes and writes a new output value (which has a smaller 
age). The time between successive completions of the task is 
7], so the worst-case age achieved of the output signal is 

7:+i,. 

Looking at figure 3, if a sample is taken later than the dispatch 
instant, the effect is to shift the line showing the age for that 
sample to the right. This can only decrease the age of the 
output based on that sample. If the latency is less than the 
worst-case, so that an output is written earlier, this only moves 
a step-down of the dotted worst-case age function to the left. 
Thus, the result still holds in the face of allowed variability in 
sampling and completion times. § 

Theorem 1: The worst-case age for a flow^ is the sum of the 

worst-case ages of each per-task flow, ^^(7, -t-1,) . 

Proof: Assume the (worst-case) age of the input signal to task 
r, is y4,_, at the instant that input is sampled. At the instant 

the output value based on this sample is written, its (worst- 
case) age is Aj_^ + L.. The age of the output value continues 

to increase until it is overwritten by a subsequent value, which 
occurs 7) time units later.   The result follows by observing 

that OQ = 0 (the age of a value obtained by sampling the 

external input signal is always 0 at the instant of sampling) 
and induction on the number of tasks (every task just adds 
7^ + Z,, to the worst-case time elapsed since the original 

external input sample). § 

It is fairly easy to see that the smallest possible age is V' Z, 
/e>f. 

Suppose the system is operating in such a way that the end-to- 
end age of a flow is arbitrarily close to this minimum, which 
will occur when the output of each task occurs arbitrarily 
close to the input of its successor. If the latency of all such 
tasks now increases very slightly, so the outputs occurs just 
after the inputs of the successor tasks, the flow suddenly goes 
from the least possible to the greatest possible end-to-end age. 
Such systems can in principle exhibit very high jitter and very 
rapid changes between small and large end-to-end age. 

V. UNI-PROCESSOR AGE SCHEDULING 

The traditional real-time periodic uni-processor scheduling 
problem has as inputs, for each periodic task r^, a specified 

period 7]; a specified upper bound C^ on the maximum 

compute time needed for any dispatch; and a specified upper 
bound on the allowed worst-case latency (often called the 
deadline Z),). The age scheduling problem uses the worst- 

case task age A^ as an input parameter, where the scheduler is 

free to trade-off period and latency as long as their sum 
remains less than the specified worst-case age. 

We first explore the relationships of this problem to the 
traditional definition of uni-processor utilization, 

/Lml   'T> 

An important concept in traditional theory is that of the 
utilization bound for a particular scheduling algorithm. Given 
a particular scheduling algorithm 5 applied to a given class of 

real-time scheduling problems, the utilization bound (/*. is 

that utilization below which a feasible schedule is guaranteed. 

age of output 
for sample #1 age of output 

for sample #2 

L. + T. 

t-^.-' ! t t I 
sample #1    output #1    sample #2   output #2    sample #3    output #3 

Fig 3. Age ot'an output as a function of time. 
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That is, if (7 < t/5 (where U is computed as above for the 

given problem) then that problem will be feasibly schedulable 
using algorithm 5. The utilization bound can be used both to 
compare the efficiency of two scheduling algorithms, and as a 
simple test to see if a given problem can be feasibly scheduled 
by a given algorithm. However, we note that all known 
utilization bounds are inexact for arbitrary deadlines, in the 
sense there exist schedulable problems whose utilization is 

above the utilization bound. U < U^ is sufficient but not 

necessary to guarantee schedulability. 

However, for age scheduling we cannot compute the 
traditional utilization from the problem statement, since the 
task periods 7^ are determined by the scheduling algorithm. 

We thus explore some properties of an analogue value that we 
call the aged utilization, 

u    -^■ > =y- 

Lemma 2: Let C/j be the utilization bound for scheduling 

algorithm S for the traditional implicit deadline scheduling 
problem (7] = D^, the deadline for task completion is the 

next dispatch of that task).  Then 5 with T^ = A^ /2 solves 

the age scheduling problem with an aged utilization bound of 

C/^/2 (i.e. any age scheduling problem where U^ ^Uljl 

will be feasibly scheduled by 5 with T. = A., /2). 

Proof: The traditional implicit deadline requirement means 
L  < 7)., hence 7]. + i, < 27^., hence it follows from 

T^ = 4/2 that T, + I, < 4. Substituting T^ = A^fl into 

the formula that defines traditional utilization gives 
U^ = Uj2, hence the aged utilization when the traditional 

utilization achieves [/*• is V^jl.^ 

Theorem 2: There exist algorithms to solve any age 
scheduling problem having an aged utilization no greater than 
50%, and there exist age scheduling problems that cannot be 
feasibly scheduled by any algorithm when the aged utilization 
is greater than 50%. 

Proof: To show the first part, we note that scheduling 
algorithms with a traditional utilization bound of 100% are 
known (e.g. earliest deadline, least laxity, harmonic rate 
monotonic).   The preceding lemma shows that these can be 
applied to solve an age scheduling problem as long as the 
aged utilization is no greater than 50%. 

To show the second part, consider the problem having a single 
task r, where C, = Aj2 . It is always the case i,. > C, for 

any possible task set and scheduling algorithm, and the only 
feasible schedule for this problem dispatches the task with 
r, = C,, which has 100% traditional utilization and 50% 

aged utilization. § 

These results show how a scheduling algorithm for the 
traditional periodic task problem where deadlines equal 
periods (called implicit deadlines) can be used to solve the age 
scheduling problem. We will call this age scheduling by 
reduction to some traditional algorithm, e.g. age scheduling by 
reduction to rate monotonic scheduling, age scheduling by 
reduction to earliest deadline first scheduling. 

The preceding results emphasize that the traditional and aged 
utilizations are different metrics that can both be computed for 
an age scheduling problem. The traditional utilization will in 
general vary depending on the scheduling algorithm, while the 
aged utilization is strictly a function of the problem 
specification. We now show that the aged utilization metric is 
always less than 100% even for the best possible schedule. 

Defn: A perfect age schedule is one in which Z,, = C, for all 

tasks. 

A perfect schedule provides the smallest latencies that could 

age of output 
for sample #1 

age of output 
for sample #2 

L. + T, 

\ 
output 
signal 

4 A A A f 

sample #1   'output #1    sample #2  output #2    sample #3    output #3 

Fig. 3. Age of an output as a function of time. 
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possibly exist. Figure 4 shows an example of a perfect age 
schedule, one achieving a traditional utilization of 1 for a 
problem having an aged utilization of 2/3 . (This figure also 

illustrates a nice visualization of the age, which is the interval 
of time between a dispatch of a task and the completion of the 
following dispatch.) A perfect age schedule has the following 
properties (which we state without proof). 

A perfect age schedule is preemption-free and jitter-free. 
A perfect age schedule may have non-zero phasing or 
offset between different tasks (i.e. offsets are decided by 
the scheduling algorithm). 
A perfect age schedule achieves the least possible ratio 
UjU A of traditional to aged utilization among all 
possible schedules for a given problem. 

We now bound the value of (/^ relative to V for perfect 
schedules, which bounds the aged utilization that could be 
achieved by any possible age scheduling algorithm. This will 
provide something analogous to the impossible-to-exceed 
limit on traditional utilization, [/ < 1 for all possible feasible 
schedules. We first state two simple lemmas, then an 
approximate bounding theorem. 

c r, cY c ^ 
Lemma 3: — =   1 -)  

T    I     T) T + C 

Proof: Divide both sides by | 1 -I- — |, you end up with 

C 
T + C 

on both sides. § 

Lemma 4: If 2_]-V, = U , then   ^xf is minimal when 
(=1." /=l..n 

X = U/n , and the minimal value is U^/n . 

Proof: The author has it on good authority that this is obvious 
to anyone familiar with Lagrange multipliers[2]. § 

Theorem 3: For a perfect age schedule of M tasks, 

n n 
Proof: The proof is by algebraic manipulation of the formula 
for VIV^ for a perfect schedule. 

E'^r IJ_ 

Using the lemma 3 above, this can be rewritten as 

T -I- C. r+c •j _u_ 

With a few more simple manipulations, this can be written in 
the form 

u.=u 

We now resort to an inexact approximation to bound the true 
result, using the fact that C/T > C/(T + C) , 

Using lemma 4 above, we can rewrite this as 

<U,<U-^/ 

Applying the quadratic formula to the right-hand side allows 
us to plot bounds on the maximum possible U^ for any given 
U. Figure 5 shows this approximation for U=l, which defines 
a region in which the maximum possible U^ (the t/^ of a 
perfect schedule for a problem having the most benign 
possible set of compute times) lies. Note that the most benign 
possible set of compute times are those for which all tasks 
have identical task utilization (i.e. a perfectly balanced 

■4  -/(,=3- —► 

'l - 2 

C = l C: c, 
C,=I c, c, 

T, - 2   
' 

A, =3 '' 

a perfeci schedule timeline 

Fig 4   Example of a perfect age schedule 
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workload). 

Theorem 4: There exist feasibly schedulable problems for 
which no feasible perfect schedule exists (i.e. preemption 
and/or jitter may be necessary to feasibly schedule some 
workloads). 

Proof: The system of two tasks r,,r2with^,=5, C;=2, 

/!,= 10, Cj=2 has no feasible non-preemptive age schedule. A 

feasible schedule must fit two executions of T, into an interval 

of length 5 (the age is the interval between a dispatch of a task 
and the subsequent completion of the next dispatch), so any 
remaining idle intervals can have length at most 1. A 
preemptive fixed priority schedule, where r, has priority 

over r^, T[=3 and ^2=6, and the dispatches are offset by 2, is 

feasible and has U=l and [7^=3/5=60%. § 

What this theorem says is that the previous aged utilization 
ratio is still overly optimistic for determining an absolute not- 
to-exceed aged utili2ation bound for the general age 
scheduling problem. It is a bound that can be achieved by an 
algorithm only for particular age scheduling problems, those 
for which a feasible perfect schedule exists. 

VI.   MULTI-PROCESSOR AGE SCHEDULING 

The distributed age scheduling algorithms we consider take as 
input sets of flows, flow age constraints, and task compute 
times; and outputs an age constraint for every task along every 
flow. We formulate this as a constraint satisfaction problem 
in the following way. 

We showed earlier that each flow age is the sum of the task 
ages along that flow. We also showed that each processor has 
an associated scheduling algorithm and aged utilization bound 
that we can use to assess schedulability. We thus have a set of 
constraints of the form 

for each flow ^, '^A, < A^ 

for each processor p, 2_j—'~-^f 

The distributed age scheduling problem is to find a set of task 

ages A that satisfy (at least) these constraints. In a later 

section we discuss a sample problem solved using an existing 
solver. 

We now turn to the question of whether there is any inherent 
inefficiency in using a distributed asynchronous architecture 
versus a centralized synchronous one. Specifically, we 
evaluate a choice between n slower distributed processors 
versus a single central processor that is n times faster. Which 
choice can handle the larger workload while still meeting 
deadlines? For example, a flow through three perfectly 
scheduled asynchronous tasks, each having a compute time of 
1 and a period of 2, has a worst-case age of 9 and loads the 
system to Vi capacity (assuming a classical breakdown 
utilization of I). But a single processor that is 3 times faster 
can achieve the same worst-case age with a period of 8 and 
loads the processor to only 1/8 capacity. To try and shed 
insight on the general question, we now present a relationship 
between the distributed system utilization and the fast uni- 
processor utilization. 

For a given flow (|) through a set ^^ of distinct tasks on 
distinct processors, consider the equation 

JeH'.. 

The left-hand side is the sum of the utilizations on all the 
processors, which is the total utilization Us of the distributed 
system (which may be greater than 1). The right-hand side 
can be recognized as the total work performed divided by the 
end-to-end flow age. This is the aged utilization for an 
idealized uni-processor that, to an external observer, does the 
same work with the same age. The factor E is the relative 
efficiency of the distributed to the uni-processor system. We 

Region for Best Possible Aged Ulilization When U = 1 

-r 

5 6 

number of tasks 

Fig. 5. Bounding region lor best possible aged utilization when traditional utilization equals one.. 
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now derive bounds on the ratio of these two values (bounds 
on the value off) when the distributed system is scheduled as 
efficiently as possible (in the sense of minimum possible 
system utilization Us). 

Lemma 5: For a single flow ^ the distributed system 
utilization 

lef. 

is minimized when 

for ally, k. 

A] " A] 

Proof: The lemma says that the sum of the individual 
processor utilizations is minimized when the derivatives of the 
individual processor utilization curves are equal. Figure 5, 
which shows the aged utilization curve as a function of the 
age for an individual processor, may be helpful. 

Suppose the lemma were not true, and the sum was minimal 
when the derivatives with respect to the ages 

a^'. d^i" 

were greater on processory and smaller on processor /. Then a 
slight decrease in Ajznd an equally slight increase in ^j would 
preserve the same end-to-end age while slightly reducing the 
sum of the utilizations, a contradiction. § 

Lemma 6: For any list of n non-negative values Xi..x„. 

1< / 

Z(--)^ 
<n 

(the ratio of the square of the sums to the sum of the squares 
never exceeds the number of values). The maximum value is 
achieved when X. = Xj (all the x values are identical). The 

minimum value is achieved when all but one x 

asymptotically approach zero. 

Proof: We can use lemma 4 to show this, letting 

2_,Xi =(/and ^x,' =^ / ■ The ratio is maximized 
1=1 ." /=! ..n 

when the denominator is minimized. Lemma 4 and a little 
algebraic manipulation show the maximum ratio is n, and that 
this is achieved when x. = Xj . For the minimum ratio, we 

note that a list of« numbers can always become dominated by 
a single value, where all but one of the values (say, A;) 

asymptotically approach 0.  In this case the ratio approaches 

xl/xl=\.§ 

Theorem 5: For a single flow (j), if for ally and k 

^; A', 
then 

EC, EC, 
/eT c. 

le'V. le'V. 

Proof: It is fairly easy to see that 

/eS' c 
Z C, '^"^^ A^ 

Zc. 
/£% 

E4 
le^j 

meaning the efficiency factor is 

Q 

Ai 

Fig. 5. Aged ulilization as a function of aee. 

E = ,!/■   c 
S C '^"^^ A^ 

/eT. 

We show by algebraic manipulation that E<n. We rewrite the 

right-hand sum using ]J[ A, as the common denominator, 

^A, 

ic, 
\ 

ViA, 

which, using slightly different notation can be written 

I I k*l 

zc,n^, 
We combine the sums in the numerator and separate out one 
age from each term in the denominator, we can rewrite this as 



IS^FT OF 18 AUGUST 2004 

We now make a substitution easily derived from the premise 

ofthe theorem, letting C, ={cjAf}Af Jin ZC.riA • 

This leads to the following reductions 

k*l 

/ k*l 

={c,M^)z^-nA 

( k 

If we apply this substitution to the previous equation, we get 

l[cAnA^       [[cj A^)[[AXYA,A, 

ZA, 

We recognize this as the ratio ofthe square ofthe sum to the 
sum ofthe squares, which by lemma 5 is never less than 1 or 

greater than IT^I (the length of flow (j), the number of distinct 

processors that host the flow). § 

As noted in lemma 5, the minimum ratio above is achieved 
when all but a single A, asymptotically approach zero. This 

occurs when the corresponding C/values are asymptotically 
small. Thisis the case where the distributed flow 
asymptotically approaches a single processor workload 
anyway. 

The maximum ratio is achieved when all the A, values are 

equal, which occurs when the corresponding C, values are 
equal, and in which case the utilizations on all the distributed 
processors are equal. With equal utilizations, and a single 
resource age scheduling algorithm having an aged breakdown 

utilization ofA'^, the distributed system is feasible providing 

rtrA,        ' 
We assume the virtual centralized processor is n times faster 
than any single distributed processor, so that the centralized 
compute times take the form C, /« . We assume an equally 

efficient single resource age scheduling algorithm is used. 
Then the virtual centralized processor is feasible providing 

I 

Theorem 5 tells us that the left-hand-side ofthe first inequality 
above can be as much as n times greater than the left-hand- 
side ofthe second inequality. In some sense, then, centralized 
synchronous scheduling can be as much as n times more 
efficient than asynchronous distributed scheduling for a single 
flow. The greatest discrepancy in efficiency occurs when the 
flow computation is evenly distributed across the distributed 
asynchronous system. 

These observations are based on an analysis of a single flow. 
However, we note theorem 5 is independent ofthe 
utilizations, it is true of a flow that loads each processor very 
lightly as well as a flow that loads each processor to the 
breakdown utilization. This implies the distributed and 
centralized processor utilizations for multiple flows would 
sum independently, which suggests this result holds for 
muhiple flows as well. 

VII.   AN EXAMPLE 

An important practical question is whether a usefully large 
problem can be tractably solved using available methods for 
finding solutions to the system of non-linear constraints 
shown at the beginning of section V. To assess this, we used 
data derived from a planned avionics system to produce and 
solve such a system of constraints. 

The core ofthe hardware architecture consisted of two 
computing clusters. Each cluster contained a high-speed time 
division multiple access bus, 4 central processors, and 2 
external bus interface modules. Each external bus interface 
module connected to 4 low-speed time division multiple 
access busses, each of which connected to between 2 and 4 
I/O processors. Each I/O processor connected to a large 
number of external devices (sensors and actuators). 

The software architecture consisted of 40 dual-redundant 
software applications, each containing between 2 and 4 
periodic tasks. There was also a software task to manage each 
external device, hosted on the connected I/O processor. The 
software architecture consisted of a total of 1472 periodic 
tasks and 2644 flows between external devices and application 
tasks. 

Before generating the model, we merged all tasks that were 
bound to the same I/O processor and executed at the same rate 
into a single task. We merged (multiplexed) every set of 
flows that had common source and destination processors, 
destination tasks with identical periods, and identical routing 
through the hardware resources. This reduced the totals to 
210 tasks and 610 flows. 

In formulating the system of non-linear constraints that 
describe feasible system schedules, we must select a set of 
flows whose end-to-end age is to be constrained. In practice. 
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this will be derived by the developers based on individual 
application timing requirements. The only values available to 
us, however, were the sampling rates of the application tasks 
hosted on the central processors   We used three times this 
value as our maximum allowed end-to-end age between 
external device and application function. 

Each bus was treated as a hardware processor, and external 
bus interface modules were ignored. Thus, a flow consisted 
of a periodic task on an I/O processor, a periodic task on a 
low-speed bus, a periodic task on a high-speed bus, and a 
periodic task on a central processor, with an end-to-end age 
constraint equal to three times the specified sampling rate of 
the task on the central processor. 

The resulting multi-processor age scheduling problem had 
1425 variables and 1872 constraints.   We assumed a 
maximum (breakdown) aged utilization of 80% for processors 
and 50% for busses. We automatically generated an AMPL 
model from a specification of this architecture written in (a 
preliminary version of) the SAE standard Avionics 
Architecture Description Language (AADL).   AMPL expects 
a goal function to be optimized, we minimized the sum of the 
maximum processor aged utilization and maximum bus aged 
utilization. 

This model was solved in about 45 seconds using CONOPT. 
The final solution had maximum processor aged utilizations of 
about 63% and maximum bus aged utilizations of about 43%. 

VIIl. SUMMARY AND FUTURE WORK 

Age, as we have defined it here, has intuitive appeal as a 
metric for specifying end-to-end timing constraints in 
distributed asynchronous systems. However, we need to 
determine if this metric has a useful meaning for control or 
signal processing engineers. The approach to sampled data 
systems that is presented in introductory texts is to assume an 
algorithm is specified as a set of difference equations that are 
evaluated periodically and instantaneously. Under these 
assumptions, a transfer function for the sampled data 
subsystem can be derived. Shannon's sampling theorem can be 
used to relate the sampling rate to the frequency spectrum of 
the signal, etc. Additional work is needed to see how the 
concept of age (as defined here) manifests itself within the 
signal processing and control engineering domains, e.g. can a 
transfer function be derived when the end-to-end controller 
timing behavior is specified as a worst-case age (as defined 
here)? 

The largest and smallest ages can vary significantly, which is 
to say an end-to-end flow may experience significant end-to- 
end jitter. Moreover, this may be fairiy unstable in the sense 
the actual end-to-end latency may change a lot over a very 
short interval of time. This aspect of end-to-end timing 
behavior is worth further investigation. 

We carried out some preliminary investigations into 
relationships between age scheduling and traditional real-time 

periodic scheduling and analysis. A similar investigation 
could be undertaken with respect to real-time switched 
network scheduling and analysis. 

Improved uni-processor age scheduling algorithms certainly 
remain to be discovered. Each such algorithm should have an 
associated aged utilization bound that can be used during the 
distributed scheduling phase. The more precise the aged 
utilization bound, the more efficient the distributed scheduling 
solution will be. Such bounds may be made more precise by 
taking into account the compute times for the tasks hosted on 
a processor. 

A near-term pragmatic problem is further work on age 
scheduling by reduction to legacy scheduling algorithms. For 
example, quantization of task periods needs further 
investigation. Methods to obtain estimated aged utilization 
bounds that are sufficiently precise to enable reasonably 
efficient distributed scheduling are needed. Note that these do 
not necessarily need to be analytic bounds, since the 
individual processor analytic methods can be used to verify 
the final solution to a high level of assurance. 
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